Saccharomyces Cerevisiae cells were immobilized in calcium alginate beads and activated charcoal for use in the
production of ethanol from batch fermentation of sugar beet waste. Treatment of the waste with NaOH to increase the
ability of lignocellulose material to hydrolysis by acid (2N H2SO4) to monosaccharide and disaccharide (mainly glucos).
The high reducing sugar concentration obtained was equal to 9.2gm/100ml (10Brix) after treatment. Fermentation
parameters, are (pH, glucose concentration (2.5-25 gm/100ml), immobilized agent concentration (2.5-25 gm/100ml)
were studied to find the optimum physiological condition. And the highest ethanol concentration obtained from the
fermentation in the presence of 20%(wt/v) calcium alginate was (9.322%(wt/v)) at 13.75%(wt/v) glucose concentration
and pH 5 .The experimental results were correlated by empirical second order polynomial equation with correlation
coefficient 96.734% and variance 93.574%
In this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery an
... Show MoreThe current study aims to produce cellulase enzyme from Streptomyces spp. isolates and study the effect of some cultural conditions on cellulase production; biofuel production from cellulotic waste through enzymatic and acids hydrolysis. Out of 74 isolates of Streptomyces sp. were screened for cellulse production in solid and liquid media. Results showed higher capability of isolate Streptomyces sp. B 167 for cellulase production and bioconversion of cellulose, therefore selected for further studies. The results of optimization revealed that the cellulase enzyme productivity by the selected isolate reached 2.1 and 2.28 U/ml after 48 h of incubation time and pH 7 respectively. Cellulase productions in tested isolate improved (2.57 U/ml) b
... Show MoreThe current study aims to produce cellulase enzyme from Streptomyces spp. isolates and study the effect of some cultural conditions on cellulase production; biofuel production from cellulotic waste through enzymatic and acids hydrolysis. Out of 74 isolates of Streptomyces sp. were screened for cellulse production in solid and liquid media. Results showed higher capability of isolate Streptomyces sp. B 167 for cellulase production and bioconversion of cellulose, therefore selected for further studies. The results of optimization revealed that the cellulase enzyme productivity by the selected isolate reached 2.1 and 2.28 U/ml after 48 h of incubation time and pH 7 respectively. Cellulase productions in tested isolate improved (2.57 U/ml) b
... Show MoreThis study was carried out in Baghdad (Al-Jadiriya) in 2006 by detecting ability of aquatic reed plant to remove heavy metals (Chromium) from waste water by batch process of adsorption with considering that acidic solution is best selection for such process with constant initial chromium concentration(60 mg/l),speed of shaking(300 rpm), temperature (30 Co) and constant contact time (4 h) but with different weights of adsorbent (reed) (0.5 ,1 ,2 ,3 and 4 )gm for each 100 ml volume of sample . The results showed that the percentage of the removed chromium were ( 8% ,17.5% ,31% ,40% and 50%) respectively for each sample according to the mass of adsorb
... Show MoreBioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars
... Show MoreBackround: The Solid state fermentation has several advantage including absence of free water , reduced volume of production media utilized for high products and the relatively low costs of production.
Methods: Thirty local isolates of soil obtained from Genetic Engneering and Biotechnology Institute. Nutrient agar was used to growth strains examination to antibacterial agent and Wheat bran and fish meal were used in combination (0-100%of each )and divided in 10 gm lost /flask . Each flask is inoculated with different numbers of Streptomyces spores and incubated for 5 days at 28°C, then the supernet was extracted and were assayed as antibacterial
Results: The ability of 30 local isolates of Streptomyc
Biodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–
... Show MoreBiotreatment using immobilized cells (IC) technology has proved to be the most promising and most economical approach for the removal of many toxic organic pollutants found in petroleum-refinery wastewater (PRW) such as phenol. This study was undertaken to evaluate the degradation of phenol by Pseudomonas cells individually immobilized in two different bio-carrier matrices including polyvinyl alcohol-guar gum (PVA-GG) and polyvinyl alcohol-agar agar (PVA-AA). Results of batch experiments revealed that complete removal of phenol was attained in the first cycle after 150 min using immobilized cells (IC) in both PVA-GG and PVA-AA. Additional cycles were confirmed to evaluate the validity of recycling beads of immob
... Show MoreAn experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show More