This work was conducted to study the oxidation of phenol in aqueous solution using copper based catalyst with zinc as promoter and different carrier, i.e. γ-Alumina and silica. These catalysts were prepared by impregnation method.
The effect of catalyst composition, pH (5.6-9), phenol to catalyst concentration ratio (2-0.5), air feed rate (30-50) ml/s, stirring speed (400-800) rpm, and temperature (80-100) °C were examined in order to find the best conditions for phenol conversion.
The best operating conditions which lead to maximum phenol conversion (73.1%) are : 7.5 pH, 4/6 phenol to catalyst concentration, 40 ml/s air feed rate, 600 rpm stirring speed, and 100 °C reaction temperature. The reaction involved an induction period and a steady state activity regime. Both of the regimes exhibiting first order behavior with respect to the phenol concentration. The rate constants k1 and k2 for the initial rate and steady state activity regime are represented by k1=1.9×10-3 ((cm3liq/gcat) 0.5s-1 and k2= 2.4×10-10 ((cm3liq/gcat) 2 s-1) respectively.
An experiment was conducted in the plastic house of the Botanical Garden in the Department of Biology, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad during one growth season. The experiment included the study of the effect of three concentrations of citric acid (0, 75, 150) mg. L-1 and four concentrations of malic acid (0, 50, 100, 150) mg. L-1 and their interaction in some of the growth and yield parameters of the broad bean plant, plant height, dry weight, number of leaves, total chlorophyll content, the number of flowers and pods and the weight of the pod. The experiment was carried out in full random design (4× 3) and with three duplicates, the results showed a significant effect of citric and malic aci
... Show MoreOne of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreBackground: Automobile spray painting is considered an occupation with a high risk of respiratory impairment and asthma. Exposure to organic solvents used for spraying might be of high risk for development of dysfunction in other organs.
Objective: The study was designed to evaluate the pulmonary and hepatic toxicity due to exposure of automobile painters to organic solvents in work places within the Baghdad governorate area.
Methods: Thirty cross sectional selected male workers employed in automobile body paint shops in two industrial areas within Baghdad city (Al-Sheikh Omar and Al-Rasheed camp regions) were recruited to the study during the period from March to May 2012. Thirty non-exposed students and employees in the college o
New nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreAbstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution (Emission) was studied at 772 nm. Several process parameter were Investigated as concentration of PVA, the effect of distance from nozzle tip to the grounded collector (gap distance), and final the effect of high voltage. We find the optimum condition to prepare a narrow nanofibers is at concentration of PVA 16gm, the fiber has 20nm diameter.
Roller-Compacted Concrete is a no-slump concrete, with no reinforcing steel, no forms, no finishing and wet enough to support compaction by vibratory rollers. Due to the effect of curing on properties and durability of concrete, the main purpose of this research is to study the effect of various curing methods (air curing, 7 days water curing, and permanent water curing) and porcelanite (local material used as an Internal Curing agent) with different replacement percentages of fine aggregate (volumetric replacement) on some properties of Roller-Compacted Concrete and to explore the possibility of introducing practical Roller-Compacted Concrete for road pavement with minimum requirement of curing. Specimens were sawed fro
... Show MoreThis study was aimed to study the effect of adding transglutaminase (TGase) on the mechanical and reservation properties of the edible films manufactured from soybean meal protein isolate (SPI) and whey protein isolate(WPI). The results showed an improvement in the properties with increase in the WPI ratios. Thickness of the SPI films amounted 0.097 mm decreased to 0.096 mm for the WPI: SPI films at a ratio of 2:1, when TGase was added decreased to 0.075 mm. While the tensile strength increased from 7.64 MPa for SPI films to eight MPa for the WPI: SPI films at a ratio of 2:1, when TGase was added increased to 11.04 MPa. Also, the elongation of the WPI: SPI films at a ratio of 2:1 presence of the TGase decreased to 40.6% compared wit
... Show More