An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter (hw/dH), ratio of pressure of process to atmosphere pressure (P/Pa), Weber number (lTe).
Statistical analysis showed that the proposed models have an average absolute relative error (AARE) of 9.3% and
standard deviation (SD) of 9.7%for first model, AARE of 9.35% and SD of 10.5%for second model and AARE of 9.8%
and SD of 7.5% for the third model.
Evaluation was carried out on the existing furrow irrigation system located in an open agricultural field within Hor Rajabh Township, south of Baghdad, Iraq (latitude: 33°09’ N, longitude: 44°24’ E). Two plots were chosen for comparison: treatment plot T1, which used subsurface water retention technology (SWRT) with a furrow irrigation system. While the treatment plot T2 was done by using a furrow irrigation procedure without SWRT. A comparison between the two treatment plots was carried out to study the efficiency of the applied water on crop yield. In terms of agricultural productivity and water use efficiency, plot T1 outperformed plot T2, according to the study’s final fin
Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict
Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MoreIn this work, an inventive photovoltaic evaporative cooling (PV/EC) hybrid system was constructed and experimentally investigated. The PV/EC hybrid system has the prosperous advantage of producing electrical energy and cooling the PV panel besides providing cooled-humid air. Two cooling techniques were utilized: backside evaporative cooling (case #1) and combined backside evaporative cooling with a front-side water spray technique (case #2). The water spraying on the front side of the PV panel is intermittent to minimize water and power consumption depending on the PV panel temperature. In addition, two pad thicknesses of 5 cm and 10 cm were investigated at three different water flow rates of 1, 2, and 3 lpm. In Case #1,
... Show MoreThis paper presents an experimental study of cooling photovoltaic (PV) panels using evaporative cooling. Underground (geothermal energy) water used to extract heat from it during cooling and cleaning of PV panels. An experimental test rig was constructed and tested under hot and dusty climate conditions in Baghdad. An active cooling system was used with auxiliary an underground water tank to provide cold water as a coolant over both PV surfaces to reduce its temperature. The cellulose pad has been arranged on the back surface and sprays cooling on the front side. Two identical PV panels modules used: without cooling and evaporative water cooling. The experiments are comprised of four cases: Case (I): backside cooling, Ca
... Show MoreAbstract
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The sim
... Show MoreDue to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show More