A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited grids and used in the training and testing of the used network. A comparison between the calculated and observed cumulative oil production has been carried out through the testing steps of the constructed ANN, an absolute average percentage error of the used network was reached to 4.044%, and this is consider to be an acceptable limit within engineering applications, in addition to that, a good behavior was reached with (FFNNW) and suitable re-entry wells location were identified according to the reservoir configuration (pressure and saturation distribution) output from SRF simulation model at the end of 2005.
The skin temperature of the earth’s surface is referred to as the Land Surface Temperature (LST). the availability of long-term and high-quality temperature records is important for various uses that affect people’s lives and livelihoods. Much valid information was provided to this research from remote sensing technology by using Landsat 8 (L8) imagery to estimate LST for Al-Ahdab oil field in Wasit city in Iraq. The aim of this research is to analyze LST variations based on Landsat 8 data for 2022 (January, April, July, and October). ArcMap 10.8 was used to estimate LST results. The results values ranged from (about 10 C in January to about 46 C in July). The results show that LS
In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Burdock ( Arctium lappa), is among the most popular plants in traditional medicine and it is associated with several biological effects. Literature survey revealed the presence of phenylpropanoid compounds .The most widespread are hydroxycinnamic acids ( mainly caffeic acid and chlorogenic acid) and lignans (mainly arctiin and arctigenin). This work will confirm the presence of these compounds in Arctium lappa, cultivated in Iraq, in both root and leaf samples. The dried plant samples were extracted by soxhlet with 80% methanol then separated the main constituents by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Identification of the isolated compounds wa
... Show MoreForm recurrence of financial crises phenomenon disturbing and attention , and returns the reasons so that its negative effects were sharp and dangerous , because of the nature and cause of Ncaha , threatened political and economic stability of the countries in which they occur these crises , in addition to Machmlh these crises spread of contagion across multiple channels to include other countries many developed and developing , and the reason for this to the openness of the economic and financial witnessed by the countries affected by crises and other countries concerned, the financial crisis is a case of financial turmoil appears in one of the sections of the financial system one and extends to
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreThis paper describes the use of remote sensing techniques in verification of the polluted area in Diyala River and Tigris River and the effected of AL-Rustamiyah wastewater treatment plant, which is located on Diyala River, one of the branches of Tigris River in south of Baghdad. SPOT-5 a French satellite image of Baghdad, Iraq was used with ground resolution of 2.5 m in May 2016. ENVI 5.1 software programming was utilized for Image processing to assess the water pollution of Diyala and Tigris River’s water. Five regions were selected from a study area and then classified using the unsupervised ISODATA method. The results indicated that four classes of water quality which are successful in assessing and mapping water pollution which confi
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreSewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos
... Show MoreThe business process re-engineering is one of the popular concepts at this time because its provide a radical solution for the problems that companies faces. This method appeared because the changes of competition and costumers 'desires at the two last decades. The markets become wider because of the globalization so the companies must change its way to stay a life.
The research aim is to concentrate on the BPR because it's a philosophy aims to re-organize the company's business process to achieve the competitive advantage, the research also aims to a plicate the BPR using cost management technique in the State Company of Vegetable Oils Industry.
&nb
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show More