A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited grids and used in the training and testing of the used network. A comparison between the calculated and observed cumulative oil production has been carried out through the testing steps of the constructed ANN, an absolute average percentage error of the used network was reached to 4.044%, and this is consider to be an acceptable limit within engineering applications, in addition to that, a good behavior was reached with (FFNNW) and suitable re-entry wells location were identified according to the reservoir configuration (pressure and saturation distribution) output from SRF simulation model at the end of 2005.
The paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show More
The purpose of this research is to improve the organizational performance of the Oil Projects Company by adopting an approach to strategic change، and finding appropriate solutions to the problems facing the company. The researcher adopted in designing his research by conducting a survey of previous literature that dealt with approaches to strategic change، as the results of the survey showed that most researchers agree on the approach of renewal and modernization، Which formed a starting point for the researcher to identify the extent of the company's management interest in renewal and modernization to improve its level of performance، and the quality of the procedures followed on the ground that is related to
... Show MoreThe present study aims to explore the effectiveness of a proposed study unit based on the funds of knowledge theory in developing the attitudes towards cultural identity and the proposed study unit. In order to achieve the goal of the study, the two researchers followed the quasi-experimental approach, where the study sample consisted of (28) female students of the fifth-grade at Al-Jeelah Basic Education School, Al-Dakhiliyah Governorate in the Sultanate of Oman. The data were collected by two scales: the first is a scale of attitudes towards cultural identity consisting of (26) items. The second was a scale of attitudes towards the proposed study unit, which consisted of (24) items. The results of the study revealed that the effect of
... Show MoreThe region is defined by the spatial dimension, which consists of a set of stabilizers (towns and villages). The concept of the territory requires conditions on the nature of functional relations and the mutual influence of the regions within the region. Any territory must be based on the interdependence and interaction between the mother city and its surrounding countryside and cities, and when the interdependence is strong and the interaction is clear, it helps to define the territory. The regions are divided on different bases. There are geographically or national homogeneous regions, and there are cultural regions that want to preserve their culture in terms of language or religion. There are administrative regions to manage
... Show MoreReservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from w
... Show More