A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited grids and used in the training and testing of the used network. A comparison between the calculated and observed cumulative oil production has been carried out through the testing steps of the constructed ANN, an absolute average percentage error of the used network was reached to 4.044%, and this is consider to be an acceptable limit within engineering applications, in addition to that, a good behavior was reached with (FFNNW) and suitable re-entry wells location were identified according to the reservoir configuration (pressure and saturation distribution) output from SRF simulation model at the end of 2005.
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
This paper aims to verify the existence of relationships between product innovation and the reputation of the organization. The study problem is that the State Organization for Marketing of Oil (SOMO) system is inflexible in terms of marketing procedures and needs innovative, unconventional methods in innovating its products and improving performance. The reputation of the organization. The importance of the study lies in that it is an attempt to raise the interest of SOMO in its approach to the research variables in order to enhance its competitive position in the future and improve the marketing business environment, which contributes to enhancing the reputation of the organization by product innovation. The study sample
... Show MoreNoor Oil Field is one of Iraqi oil fields located in Missan province / Amarah city. This field is not subjected to licensing rounds, but depends on the national effort of Missan Oil Company. The first two wells in the field were drilled in seventies and were not opened to production until 2009. The aim of this study is to study the possibility of using the method of gas lift to increase the productivity of this field . PROSPER software was used to design the continuous gas lift by using maximum production rate in the design.
The design was made after comparing the measured pressure with the calculated pressure, this comparison show that the method of Beggs-Brill and Petroleum Exper
... Show MoreA3D geological model was constructed for Al-Sadi reservoir/ Halfaya Oil Field which is discovered in 1976 and located 35 km from Amara city, southern of Iraq towards the Iraqi/ Iranian borders.
Petrel 2014 was used to build the geological model. This model was created depending on the available information about the reservoir under study such as 2D seismic map, top and bottom of wells, geological data & well log analysis (CPI). However, the reservoir was sub-divided into 132x117x80 grid cells in the X, Y&Z directions respectively, in order to well represent the entire Al-Sadi reservoir.
Well log interpretation (CPI) and core data for the existing 6 wells were the basis of the petrophysical model (
... Show MoreObjectives: This Paper is an attempt to evaluate the services provided by the private hospitals
and to identify the strength and weakness in
their performance The results can be utilized in stating conclusion and recommendations to improve
and activate the role of private medical sector in society .
Methodology: A questionnaire has be designed for this purpose and distributed to ( 132 ) beneficiaries
mostly from Baghdad private hospitals .
Results: The paper has come out with many important results . Among These are the following :
* these who benefit from services provided by private hospitals believe that the good performance of
such hospital is not due to the medical services alone but also to scientific aspect
Heavy oil is classified as unconventional oil resource because of its difficulty to recover in its natural state, difficulties in transport and difficulties in marketing it. Upgrading solution to the heavy oil has positive impact technically and economically specially when it will be a competitive with conventional oils from the marketing prospective. Developing Qaiyarah heavy oil field was neglected in the last five decades, the main reason was due to the low quality of the crude oil resulted in the high viscosity and density of the crude oil in the field which was and still a major challenge putting them on the major stream line of production in Iraq. The low quality of the crude properties led to lower oil prices in the global markets
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.