In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A comparison with selected correlations in the literature showed that the developed ANN correlation noticeably improved the prediction of bubble sizes. The developed correlation also shows better prediction over a wide range of operation parameters in bubble columns.
This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show MoreThis paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T
Due to that the Ultra Wide Band (UWB) technology has some attractive features like robustness to multipath fading, high data rate, low cost and low power consumption, it is widely use to implement cognitive radio network. Intuitively, one of the most important tasks required for cognitive network is the spectrum sensing. A framework for implementing spectrum sensing for UWB-Cognitive Network will be presented in this paper. Since the information about primary licensed users are known to the cognitive radios then the best spectrum sensing scheme for UWB-cognitive network is the matched filter detection scheme. Simulation results verified and demonstrated the using of matched filter spectrum sensing in cognitive radio network with UWB and pro
... Show MoreIn this paper a WLAN network that accesses the Internet through a GPRS network was implemented and tested. The proposed network is managed by the Linux based server. Because of the limited facilities of GPRS such as dynamic IP addressing besides to its limited bandwidth a number of techniques are implemented to overcome these limitations.
Dynamic Host Configuration Protocol (DHCP) server was added to provide a single central control for all TCP/IP resources. Squid Proxy was added to provide caching of the redundant accessed Web content to reduce the Internet bandwidth usage and speeding up the client’s download time. Network Address Translation (NAT) service was configured to share one IP ad
... Show MoreThe objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. This work modernize the feedforward neural network, so the secret message will be encrypted by unsupervised neural network method to get the cipher text that can be decrypted using the same network to get the original text. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding lengths. In this work, the key is the final weights
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreWireless control networks (WCNs), based on distributed control systems of wireless sensor and actuator networks, integrate four technologies: control, computer network and wireless communications. Electrostatic precipitator (ESP) in cement plants reduces the emissions from rotary kiln by 99.8% approximately. It is an important thing to change the existing systems (wireline) to wireless because of dusty and hazardous environments. In this paper, we designed a wireless control system for ESP using Truetime 2 beta 6 simulator, depending on the mathematical model that have been built using identification toolbox of Matlab v7.1.1. We also study the effect ofusing wireless network on performance and stability of the closed l
... Show MoreIn recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p
... Show More