Two different polyvinyl alcohol/polyvinyl chloride (PVA/PVC) hollow fiber composite nanofiltration membranes were prepared after PVC hollow fiber membranes were coated using dip-coating method with PVA aqueous solution, which was composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), and water [PVA/AEO9/water (4:0.5:95.5) wt%]. Effect of two different PVC hollow fiber immersion times in coating solution were studied. Cross-section, internal and external surfaces of the PVC hollow fibers and PVA/PVC composite nanofiltration membranes structures were characterized by scanning electron microscopy (SEM), pure water permeation flux and solutes rejection. It was found that, the coating layer thickness on the outer surface of the 19 wt% PVC hollow fiber was thin and about (6μm), while the coating solution penetrates through the outer edge of the PVC hollow fiber and it looks like sponge-like structure with increase of the dip-coating time from 20 to 30 sec. Besides, the pure water permeation flux decreases and solutes rejection increases with an increase of the coating time from 20 to 30 sec for the two PVA/PVC composite nanofiltration membranes. Molecular weight cut-off (MWCO) of the PVA/PVC composite nanofiltration membranes were in the range of NF (i.e. 200-3000 Mw).
Water scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research wor
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
This study was carried out to investigate the effects of magnetized water on accumulated infiltration depth. A test rig was designed and constructed for this purpose was installed at the water tests laboratory of the Department of Water Resources Engineering at the University of aghdad. The investigation was carried out by using two types of soil, different flow velocities throughout magnetizing device and different configuration of magnets over and under the water passage of the magnetizing device. The soils that were used in the experiments are clayey and sandy soils. Six different flow velocities throughout magnetizing device ranged between 0.29 to 1.19 cm/s and ten configurations of arranging the magnets over and under th
... Show MoreIn this study, ceramic purifier (CP) was produced from a mixture of Iraqi raw materials. This ceramic mixture was prepared using Bentonite as a Clay, Porcelanite as a Silica, and Limestone as a flux. The produced ceramic filter was formed by semi-dry compressing method and was fired at 1200 C?. Physical properties of the produced CP were measured. A hydraulic test rig was constructed to study the hydraulic conductivity of the produced CP. The average hydraulic conductivity of the produced CP was 55 times that of commercial types of ceramic filters. The mineral composition of the produced ceramics was found by X-Ray tests. Tests results showed that all of the produced ceramics filters composed mainly of low Cristobalte and Tridoymite in addi
... Show MoreSalinity of soil or irrigation water is one of the most important obstacle towards crop production and productivity, especially with the increasing scarcity of fresh water in Iraq and the Arab countries. The impact of salinity will be alleviated with the increasing temperature due to global warming. The objectives of this article was to shed some light on traits more related to salinity stress tolerance in oats, and to identify genetic variation of these traits. A split-plot arrangement experiment with RCBD was applied through 2011-2013 on the farm of Dept. of Field Crops/Coll. of Agric./Univ. of Baghdad. The oats cultivars; Hamel, Pimula and Genzania were set in sub-plots, whereas water quality was set in main-plots. Water quality had two
... Show Morestudy was conducted on a stretch of Tigris river crossing Baghdad city to determine the concentration of some chlorophenols pollutants. Aqueous samples were preliminary enriched about 500 times and the chlorophenols have determined using high performance liquid chromatography HPLC. Limits of detection LOD were (0.007–0.012 mg L-1), relative standard deviations RSD% were 2.4%–5.59% and relative recoveries were 51.06%– 104.07%. The existence of chlorophenols in Tigris river was in the range 0.023–4.596 mg L-1. The developed method suggested in this study can be applied for routine analysis and monitoring of chlorinated phenols in environmental aqueous samples.
This paper presents a new approach to discover the effect of depth water for underwater visible light communications (UVLC). The quality of the optical link was investigated with varying water depth under coastal water types. The performance of the UVLC with multiple input–multiple output (MIMO) techniques was examined in terms of bit error rate (BER) and data rate. The theoretical result explains that there is a good performance for UVLC system under coastal water.
In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show More