Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2
In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show MoreThe first aim in this paper is to introduce the definition of fuzzy absolute value on the vector space of all real numbers then basic properties of this space are investigated. The second aim is to prove some properties that finite dimensional fuzzy normed space have.
This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show MoreBubbled slabs can be exposed to damage or deterioration during its life. Therefore, the solution for strengthening must be provided. For the simulation of this case, the analysis of finite elements was carried out using ABAQUS 2017 software on six simply supported specimens, during which five are voided with 88 bubbles, and the other is solid. The slab specimens with symmetric boundary conditions were of dimensions 3200/570/150 mm. The solid slab and one bubbled slab are deemed references. Each of the other slabs was exposed to; (1) service charge, then unloaded (2) external prestressing and (3) loading to collapse under two line load. The external strengthening was applied using prestressed wire with four approaches, wh
... Show MoreIn this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show More