The present work aims to study the efficiency of using aluminum refuse, which is available locally (after dissolving it in sodium hydroxide), with different coagulants like alum [Al2 (SO4)3.18H2O], Ferric chloride FeCl3 and polyaluminum chloride (PACl) to improve the quality of water. The results showed that using this coagulant in the flocculation process gave high results in the removal of turbidity as well as improving the quality of water by precipitating a great deal of ions causing hardness. From the experimental results of the Jar test, the optimum alum dosages are (25, 50 and 70 ppm), ferric chloride dosages are (15, 40 and 60 ppm) and polyaluminum chloride dosages were (10, 35 and 55 ppm) for initial water turbidity (100, 500 and 1000 NTU) respectively. While, adding sodium aluminate with the coagulants (Alum, FeCl3 and PACl), the optimum dose of 50 ppm was enough for the reduction of turbidity and hardness of water.
The synthesis of gold nanoparticles AuNPs was achievedby the reduction of sodium tetrachloroaurate (III) (NaAuCl4) with ceftriaxone sodium (CR) in aqueous solutionswithout the use of other reducing agent. The effect of reactants concentration, temperature and pH on the sizes and morphology of AuNPs were also studied. The synthesized AuNPs were characterized by UV- visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscope (AFM) analysis. Conjugation of antibiotic with the nanoparticles was characterized by FTIR spectrophotometry.
The synthesis of gold nanoparticles AuNPs was achievedby the reduction of sodium tetrachloroaurate (III) (NaAuCl4) with ceftriaxone sodium (CR) in aqueous solutionswithout the use of other reducing agent. The effect of reactants concentration, temperature and pH on the sizes and morphology of AuNPs were also studied. The synthesized AuNPs were characterized by UV- visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscope (AFM) analysis. Conjugation of antibiotic with the nanoparticles was characterized by FTIR spectrophotometry.
Polyaniline organic Semiconductor polymer was prepared by oxidation polymerization by adding hydrochloric acid concentration of 0.1M and potassium per sulfate concentration of 0.2M to 0.1M of aniline at room temperature, the polymer was deposited at glass substrate, the structural and optical properties were studies through UV-VIS, IR, XRD measurements, films have been operated as a sensor of vapor H2SO4 and HCl acids.
Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreAnd the necessity for the progress of modern societies Because the scientific and objective characteristics that characterize modern societies and distinguish them from traditional societies, Is represented by the extent of its innovative achievements in the theoretical, applied and material scientific and spiritual fields. It should be noted that quality and innovation in modern societies is based on two main pillars, Standard measures for measuring and evaluating innovations to achieve their high quality, And the dissemination of the culture of innovation to spread awareness of the importance and conditions of success, and this is done by the advanced industrial countries, However, despite the great disparity between developed industri
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreThe monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non
... Show More