PC-based controller is an approach to control systems with Real-Time parameters by controlling selected manipulating variable to accomplish the objectives. Shell and tube heat exchanger have been identified as process models that are inherently nonlinear and hard to control due to unavailability of the exact models’ descriptions. PC and analogue input output card will be used as the controller that controls the heat exchanger hot stream to the desired temperature.
The control methodology by using four speed pump as manipulating variable to control the temperature of the hot stream to cool to the desired temperature.
In this work, the dynamics of cross flow shell and tube heat exchanger is modeled from step changes in cold water flow rate (manipulated variable). The model is identified to be First Order plus Dead Time (FOPDT).
The objective of this work is to design and implement a controller to regulate the outlet temperature of hot water that is taken as controlled variable. The comparison of the designed PI controller with the PC-Based controller performance (according to rise time, percentage overshoot and settling time) shows a good agreement for PC-Based to control the system.
Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and
Today many people suffering from health problems like dysfunction in lungs and cardiac. These problems often require surveillance and follow up to save a patient's health, besides control diseases before progression. For that, this work has been proposed to design and developed a remote patient surveillance system, which deals with 4 medical signs (temperature, SPO2, heart rate, and Electrocardiogram ECG. An adaptive filter has been used to remove any noise from the signal, also, a simple and fast search algorithm has been designed to find the features of ECG signal such as Q,R,S, and T waves. The system performs analysis for medical signs that are used to detected abnormal values. Besides, it sends data to the Base-Stati
... Show MoreThis study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show More<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi
... Show MoreRobots have become an essential part of modern industries in welding departments to increase the accuracy and rate of production. The intelligent detection of welding line edges to start the weld in a proper position is very important. This work introduces a new approach using image processing to detect welding lines by tracking the edges of plates according to the required speed by three degrees of a freedom robotic arm. The two different algorithms achieved in the developed approach are the edge detection and top-hat transformation. An adaptive neuro-fuzzy inference system ANFIS was used to choose the best forward and inverse kinematics of the robot. MIG welding at the end-effector was applied as a tool in this system, and the wel
... Show MoreAbstract
Pneumatic processes sequence (PPS) is used widely in industrial applications. It is common to do a predetermined PPS to achieve a specific larger task within the industrial application like the PPS achieved by the pick and place industrial robot arm. This sequence may require change depending on changing the required task and usually this requires the programmer intervention to change the sequence’ sprogram, which is costly and may take long time. In this research a PLC-based PPS control system is designed and implemented, in which the PPS is programmed by demonstration. The PPS could be changed by demonstrating the new required sequence via the user by following simple series of manual steps without h
... Show MoreB3LYP/6-31G, DFT method was applied to hypothetical study the design of six carbon nanotube materials based on [8]circulene, through the use of cyclic polymerization of two and three molecules of [8]circulene. Optimized structures of [8]circulene have saddle-shaped. Design of six carbon nanotubes reactions were done by thermodynamically calculating (Δ S, Δ G and Δ H) and the stability of these hypothetical nanotubes depending on the value of HOMO energy level. Nanotubes obtained have the most efficient gap energy, making them potentially useful for solar cell applications.
Image databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p