A range of batch experiments were carried out for the estimation of the key process parameters in adsorption of Furfural from aqueous solution onto activated carbon in fixed-bed adsorber. A batch absorber model has been used to determine the external mass transfer coefficient (kf) which equal to 6.24*10-5 m/s and diffusion coefficient (Dp) which equal to 9.875*10-10 m2/s for the Furfural system. The Langmuir model gave the best fit for the data at constant temperature (30oC). The pore diffusion mathematical model using nonlinear isotherm provides a good description of the adsorption of Furfural onto activated carbon.
Physical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K and hydrogen gas using volumetric apparatus at room temperature, respectively. These analyses were used to determine the effect of coke deposition and poisoning metal on surface area, pore size distribution, and metal surface area of fresh and spent hydrodesulphurization catalyst Co-Mo\Al2O3 . Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery. The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores of these samples are cylindrical, an
... Show MorePhysical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K
and hydrogen gas using volumetric apparatus at room temperature respectively. These analyses were used for
determination the effect of coke deposition and poisoning metal on surface area, pore size distribution and
metal surface area of fresh and spent hydrodesulphurization catalyst Co-Mo\Al2O3 .
Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery.
The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with
fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores
of these sample
Biomass is a popular renewable carbon source because it has a lot of potential as a substitute for scarce fossil fuels and has been used to make essential compounds like 5-hydroxymethylfurfural (HMF). One of the main components of biomass, glucose, has been extensively studied as a precursor for the production of HMF. Several efforts have been made to find efficient and repeatable procedures for the synthesis of HMF, a chemical platform used in the manufacturing of fuels and other high-value compounds. Sulfonated graphite (SG) was produced from spent dry batteries and utilized as a catalyst to convert glucose to 5-hydroxymethylfurfural (HMF). Temperature, reaction time, and catalyst loading were the variables studied. When dimethyl sulfo
... Show MoreFree boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the
Thermal pyrolysis kinetics of virgin high-density polyethylene (HDPE) was investigated. Thermal pyrolysis of HDPE was performed using a thermogravimetric analyzer in nitrogen atmosphere under non-isothermal conditions at different heating rates 4, 7, 10 °C/min. First-order decomposition reaction was assumed, and for the kinetic analysis Kissinger-Akahira-Sunose(KAS), Flynn-Wall-Ozawa(FWO) and Coats and Redfern(CR) method were used. The obtained values of average activation energy by the KAS and FWO methods were equal to137.43 and 141.52 kJ/mol respectively, these values were considered in good agreement, where the average activation energy value obtained by CR equation methods was slightly different which equal to 153.16 kJ/
... Show MoreIn this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this study, a mathematical model for the kinetics of solute transport in liquid membrane systems (LMSs) has been formulated. This model merged the mechanisms of consecutive and reversible processes with a “semi-derived” diffusion expression, resulting in equations that describe solute concentrations in the three sections (donor, acceptor and membrane). These equations have been refined into linear forms, which are satisfying in the special conditions for simplification obtaining the important kinetic constants of the process experimentally.
In this study, we conducted a series of polymerization studies of hexyl methacrylate in dimethyl sulfoxide with (0.1 - 0.4) mol dm-3 of monomer and (1 10-3 – 4 10-3) mol dm-3 of benzoyl peroxide as initiators at 70 °C. Using the well-known conversion vs. time technique, the effects of initiator and monomer concentration on the rate of polymerization (Rp) were studied. An initiator of order 0.35 was obtained in accordance with theory and a divergence from normal kinetics was detected with an order of 1.53 with respect to monomer concentration. The activation energy was determined to be (72.90) kJ mol-1, which does not correspond to the value of most thermally initiated m
... Show MoreThe non-isothermal crystallization kinetics and crystalline properties of nanocomposites poly butyleneterephthalate, [PBT] /multiwalled-carbon nanotubes (MWCNTs) were tested by differential scanning calorimetry (DSC). PBT/(MWCNTs) nanocomposite was prepared by ultrasonicated of MWCNTs (0.5, 1, 2, 4 wt %) in dichloromethane (DCM) and after that the powdered PBT polymer was added to the MWCNTs solution. The non-isothermal crystallization results show that increasing the MWCNTs contents, decreased the melting temperature (Tm) of PBT/(MWCNTs) nanocomposite as compared with pure PBT, while resulting in improving the degree of crystallinity. These results indicated that a little amount of MWCNTs can be evident strong nucleating agent in PBT na
... Show More