In this study, the kinetics for the reaction of tert-butanol esterification with acetic acid in the presence of Dowex 50Wx8 catalyst was investigated. The reaction kinetic experiments were conducted in 1000 milliliter vessel at temperatures ranged from 50 - 80 oC, catalyst loading 25-50 g/L, and the molar ratios of acetic acid to tert-butanol from 1/3 – 3/1. The reaction rate was found to increase with increasing temperature and catalyst loading. It was also found the conversion of the tert-butanol increases as the molar ratio of acid to alcohol increases from 1/3 – 3/1. The Non-ideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution UNIFAC method. The results show that the activation energy of tert-butanol esterification with acetic acid was found to be 1.09 kJ/mol.
This work deals with kinetics and chemical equilibrium studies of esterification reaction of ethanol with acetic acid. The esterification reaction was catalyzed by an acidic ion exchange resin (Amberlyst- 15) using a batch stirred tank reactor. The pseudo-homogenous and Eley-Rideal models were successfully fitted with experimental data. At first, Eley-Rideal model was examined for heterogeneous esterification of acetic acid and ethanol. The pseudo-homogenous model was investigated with a power-law model. The apparent reaction order was determined to be (0.88) for Ethanol and (0.92) for acetic acid with a correlation coefficient (R2) of 0.981 and 0.988, respectively. The reaction order was determined to be 4.1087x10-3 L0.8/(mol0.8.min) with
... Show MoreThe study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show MoreThe Esterification kinetics of acetic acid with ethanol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 50-60°C and at a different molar ratio of ethanol to acetic acid [EtOH/Ac]. Investigation of kinetics of the reaction indicated that the low of [EtOH/Ac] molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 80% was obtained at 60°C for molar ratio of 10 EtOH/Ac. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. Activity coefficients were calculated using UNIFAC progra
... Show MoreThe esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of ac
... Show MoreMCM-48 zeolites have unique properties from the surfaces and structure point of view as it’s shown in the results ,and unique and very sensitive to be prepared, have been experimentally prepared and utilized as a second-generation/ acid - catalyst for esterification reactions of oleic acid as a model oil for a free fatty acid source with Ethanol. The characterization of the catalyst used in the reaction has been identified by various methods indicating the prepared MCM-48 is highly matching the profile of common commercial MCM-48 zeolite. The XRF results show domination of SiO2 on the chemical structure with 99.1% and agreeable with the expected from MCM-48 for it's of silica-based, and the SEM results show the cubic c
... Show MoreA mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading.
The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose.
&nb
... Show MoreA mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading. The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose. The e
... Show MoreThis research presents a new study in kinetics under reactive distillation by using consecutive two – step reaction : the saponification reaction of diethyl adipate with sodium hydroxide solution . The distillation process takes the role of withdrawing the intermediate product (sodium monoethyladipate SMA) which otherwise converts to the final product of low purity.The effect of three parameters were studied through a design of experiments applying 23 factorial design. These parameters were : the mole ratio of DA to NaOH solution (0.1 and 1) , NaOH solution concentration (3 N and 8 N) , and batch time (1.5 hr. and 3.5 hr.) . The conversion of DA to sodium monoethyladipate(SMA)(intermediate product) was the effect of these pa
... Show MoreViscosity (η) of solutions of 1-butanol, sec-butanol, isobutanol and tert-butanol were investigated in aqueous solution structures of ranged composition from 0.55 to 1 mol.dm-3 at 298.15 K. The data of (η/η˳) were evaluated based on reduced Jone - Dole equation; η/η˳ =BC+1. In the term of B value, the consequences based on solute-solvent interaction in aqueous solutions of alcohols were deliberated. The outcomes of this paper discloses that alcohols act as structure producers in the water. Additionally, it has shown that solute-solvent with interacting activity of identical magnitude is in water-alcohol system