A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)
Background: Dimensional changes of acrylic denture bases after polymerization results in need for further adjustments or even ends with technical failure of the finished dentures. The purpose of this study was to estimate the linear dimensional changes for different palatal depths when using multiple investment materials and polymerization techniques. Materials and methods: Ninety upper complete denture bases were constructed for this study. They were divided into two main groups according to the polymerization methods: conventional water bath and experimental autoclave (short and long cycles). Each main group was further subdivided into three subgroups according to the palatal depth (shallow, medium and deep). Furthermore, for each palatal
... Show MoreBackground: The accuracy of fitness of any dental casting is imperative for the success of any prosthodontic treatment. From the time that dental casting was first introduced, efforts have been made to produce more accurate and better fitted castings with minimal marginal discrepancy. The aim of this in vitro study was to evaluate the effects of three different investing and burnout techniques on the vertical marginal discrepancies ofceramometalcopings invested with two types of phosphate- bonded investments. Materials and methods: Sixty wax patterns were fabricated on a standardized prepared brass die representing an upper central incisor by the aid of a custom-made split mold. Three different investing and burnout techniques were applied
... Show MoreThe study of cohomology groups is one of the most intensive and exciting researches that arises from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which plays a rigorous role in the geometric classification of associative algebras. This work focuses on the applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero and degree one of nilpotent associative algebras in dimension four are described in matrix form.
In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
The main aim of this paper is to apply a new technique suggested by Temimi and Ansari namely (TAM) for solving higher order Integro-Differential Equations. These equations are commonly hard to handle analytically so it is request numerical methods to get an efficient approximate solution. Series solutions of the problem under consideration are presented by means of the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy to implement rapidly convergent series to the exact solution with minimum amount of computation. The MATLAB is used as a software for the calculations.
Objectives. The current study aimed to predict the combined mesiodistal crown widths of maxillary and mandibular canines and premolars from the combined mesiodistal crown widths of maxillary and mandibular incisors and first molars. Materials and Methods. This retrospective study utilized 120 dental models from Iraqi Arab young adult subjects with normal dental relationships. The mesiodistal crown widths of all teeth (except the second molars) were measured at the level of contact points using digital electronic calipers. The relation between the sum mesiodistal crown widths of the maxillary and mandibular incisors and first molars and the combined mesiodistal crown widths of the maxillary and mandibular canines and premolars was as
... Show More