In all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FOPDT).
The conventional PI and PID control were studied and the tuning of control
parameters was found by Ziegler-Nichols reaction curve tuning method to find the
best values of proportional gain (Kc), integral time ( I) and derivative time ( D).
The conventional controller tuning is compared with IMC techniques in this work and
it was found that the Ziegler –Nichols controller provides the best control for the
disturbance and the worst for the set-point change, while the IMC controller results
show satisfactory set-point responses but sluggish disturbance responses because the
approximate FOPTD model has relatively small time delay.
Feedforward and feedforward combined with feedback control systems were used as
another strategy to compare with above strategies. Feedforward control provides a
better response to disturbance rejection than feedback control with a steady state
deviation (offset). Thus, a combined feedforward-feedback control system is preferred
in practice where feedforward control is used to reduce the effects of measurable
disturbances, while feedback trim compensates for inaccuracies in the process model,
measurement error, and unmeasured disturbances. Also the deviation (offset) in
feedforward control was eliminated.
Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with the most robust type of FACTS devices; it’s a Unified Power Flow Controller (UPFC). Many cases have been taken to study how the system behaves in the presence and absence of the UPFC under normal and contingency conditions. The UPFC is a device that can be used to improve the bus voltage, increasing the loadability of the line and reduce the active and reactive power losses in the transmission lines, through controlling the flow of real and reactive power. Both the magnitude and the phase angle of th
... Show MoreToday, the five Caspian riparian states on the shores of the Caspian Sea (Kazakhstan, Turkmenistan, Azerbaijan, Russia, and Iran) have become a front for ambitions and international and regional competition, especially in light of the features and characteristics that natural geography has endowed them with and their enjoyment of a group of economic and mineral wealth that are not optimally exploited so far which made it a strategic attraction area for international trends and interventions, especially Western ones. It is a battleground for major international companies aiming to monopolize promising industrial investments in order to impose control and influence on the region’s resources and economic wealth and thus impose their forei
... Show MoreThis work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia
This work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia
A reduced-order extended state observer (RESO) based a continuous sliding mode control (SMC) is proposed in this paper for the tracking problem of high order Brunovsky systems with the existence of external perturbations and system uncertainties. For this purpose, a composite control is constituted by two consecutive steps. First, the reduced-order ESO (RESO) technique is designed to estimate unknown system states and total disturbance without estimating an available state. Second, the continuous SMC law is designed based on the estimations supplied by the RESO estimator in order to govern the nominal system part. More importantly, the robustness performance is well achieved by compensating not only the lumped disturbance, but also its esti
... Show MoreThe research aims to enhance the level of evaluation of the performance of banking transactions control policies and procedures. The research is based on the following hypothesis: efficient transactions control policies and procedures contribute enhancing financial reporting, by assessing non-application gap of those policies and procedures in a manner that helps to prevent, discover, and correct material misstatements. The researchers designed an examination list that includes the control policies and procedures related to the transactions, as a guide to the bank audit program prepared by the Federal Financial Supervision Bureau. The research methodology is
... Show MoreThis work is aiming to study and compare the removal of lead (II) from simulated wastewater by activated carbon and bentonite as adsorbents with particle size of 0.32-0.5 mm. A mathematical model was applied to describe the mass transfer kinetic.
The batch experiments were carried out to determine the adsorption isotherm constants for each adsorbent, and five isotherm models were tested to choose the best fit model for the experimental data. The pore, surface diffusion coefficients and mass transfer coefficient were found by fitting the experimental data to a theoretical model. Partial differential equations were used to describe the adsorption in the bulk and solid phases. These equations were simplified and the
... Show MoreIn IRAQ, the air conditioners are the principal cause of high electrical demand. In summer, the outer temperature sometimes exceeds 500C which significantly effects on the A/C system performance and power consumed. In the present work, the improvement in mechanical and electrical performance of split A/C system is investigated experimentally and analytically. In this paper, performance and energy saving enhancement of a split-A/C system was experimentally investigated to be efficiently compatible with elevated temperature weathers. This improvement is accomplished via Smart Control System integrate with Proportional-Integral- Differential PID algorithm. The PIC16F877A micro-controller has been programmed with the PID and PWM c
... Show MoreLowering the emission, fuel economy and torque management are the essential
requirements in the recent development in the automobile industry. The main engine control
input that satisfies the above requirements is the throttling angle which adjusts the air mass
flow rate to the engine port. Due to the uncertainty and the presence of the nonlinear
components in its dynamical model, the sliding mode control theory is utilized in this work
for the throttle valve angle control system to design a robust controller for this system in the
presence of a nonlinear spring and Coulomb friction. A continuous sliding mode control law
which consists of a saturation function, instead of a signum function, and the integral of
ano