Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability. Trend test was performed to ensure that the developed model would follow the physical laws. Results show that the developed model outperforms the published correlations in term of absolute average percent relative error of 6.5%, and correlation coefficient of 96%.
During the last few years, the greener additives prepared from bio-raw materials with low-cost and multifunctional applications have attracted considerable attention in the field of lubricant industry. In the present work, copolymers derived from sunflower and linseed oils with decyl methacrylate were synthesized by a thermal method using benzoyl peroxide (BPO) as a radical initiator. Direct polymerization of fatty acid double bonds in the presence of a free radical initiator results in the development of environmentally friendly copolymeric additives (Co-1 and Co-2). Fourier Transform Infrared (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR) were used to characterize the resulting copolymers. Thermal decomposition of copolymers was de
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
Background: Neural tube defects (NTDs) are said to be inherited in a multifactorial fashion, i.e. genetic-environmental interaction. Maternal nutritional deficiencies had long been reported to cause NTDs, especially folate deficiency during early pregnancy. More attention had been paid to the exact mechanism by which this deficiency state causes these defects in the developing embryo. The most significant of all researches was that connecting reduced folate and increased homocysteine level in maternal serum on one hand and the risk of developing a NTD baby on the other hand. Objectives : to determine the significance of homocysteine level in Iraqi mothers who gave birth to babies with NTDs as compared to normal controls. Patients, Materials
... Show MoreBackground: Although various imaging modalities are available for evaluating suspicious breast lesions, ultrasound-based Shear-Wave Elastography (SWE) is an advanced, non-invasive technique complementary to grayscale sonography. This technique evaluates the elasticity of a specific tissue by applying sonic pressure to that tissue.
Objective: The aim is to assess the role of SWE in evaluating solid breast masses in correlation to histopathological study results.
Subjects and Methods: This prospective study was done in a tertiary care teaching hospital from September 2019 to August 2020. A study population of 50 women aged 18 years or above with an
... Show MoreAbstract\
In this research, estimated the reliability of water system network in Baghdad was done. to assess its performance during a specific period. a fault tree through static and dynamic gates was belt and these gates represent logical relationships between the main events in the network and analyzed using dynamic Bayesian networks . As it has been applied Dynamic Bayesian networks estimate reliability by translating dynamic fault tree to Dynamic Bayesian networks and reliability of the system appreciated. As was the potential for the expense of each phase of the network for each gate . Because there are two parts to the Dynamic Bayesian networks and two part of gate (AND), which includes the three basic units of the
... Show More