Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability. Trend test was performed to ensure that the developed model would follow the physical laws. Results show that the developed model outperforms the published correlations in term of absolute average percent relative error of 6.5%, and correlation coefficient of 96%.
Background: Although various imaging modalities are available for evaluating suspicious breast lesions, ultrasound-based Shear-Wave Elastography (SWE) is an advanced, non-invasive technique complementary to grayscale sonography. This technique evaluates the elasticity of a specific tissue by applying sonic pressure to that tissue.
Objective: The aim is to assess the role of SWE in evaluating solid breast masses in correlation to histopathological study results.
Subjects and Methods: This prospective study was done in a tertiary care teaching hospital from September 2019 to August 2020. A study population of 50 women aged 18 years or above with an
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreBackground: Neural tube defects (NTDs) are said to be inherited in a multifactorial fashion, i.e. genetic-environmental interaction. Maternal nutritional deficiencies had long been reported to cause NTDs, especially folate deficiency during early pregnancy. More attention had been paid to the exact mechanism by which this deficiency state causes these defects in the developing embryo. The most significant of all researches was that connecting reduced folate and increased homocysteine level in maternal serum on one hand and the risk of developing a NTD baby on the other hand. Objectives : to determine the significance of homocysteine level in Iraqi mothers who gave birth to babies with NTDs as compared to normal controls. Patients, Materials
... Show MoreA high-performance liquid chromatography method was employed for the quantitative determination of ascorbic acid (AA) which called vitamin C in three types of Iraqi citrus (orange mandarin and aurantium ) and to establish this goal , evaluation of ascorbic acid degradation is so important due to its significant criticality when exposure to ordinary atmospheric conditions. The chromatographic analysis of AA was carried out after their sequential elution with KH2PO4 ( as mobile phase) by reverse-phase HPLC technique with C8 column and UV detection at 214 nm. .Bad resolutions was appeared clearly for C8 column , so another alternative condition were carried out to improve the resolution by replacement of C8 by C18 column .Statistical treat
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The res
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The results showed
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).