Preferred Language
Articles
/
ijcpe-333
Prediction and Correlations of Residual Entropy of Superheated Vapor for Pure Compounds
...Show More Authors

Prediction of accurate values of residual entropy (SR) is necessary step for the
calculation of the entropy. In this paper, different equations of state were tested for the
available 2791 experimental data points of 20 pure superheated vapor compounds (14
pure nonpolar compounds + 6 pure polar compounds). The Average Absolute
Deviation (AAD) for SR of 2791 experimental data points of the all 20 pure
compounds (nonpolar and polar) when using equations of Lee-Kesler, Peng-
Robinson, Virial truncated to second and to third terms, and Soave-Redlich-Kwong
were 4.0591, 4.5849, 4.9686, 5.0350, and 4.3084 J/mol.K respectively. It was found
from these results that the Lee-Kesler equation was the best (more accurate) one
compared with the others, but this equation is sometimes not very preferable. It was
noted that SRK equation was the closest one in its accuracy to that of the Lee-Kesler
equation in calculating the residual entropy SR of superheated vapor, but it was
developed primarily for calculating vapor-liquid equilibrium and to overcome this
problem, efforts were directed toward the possibility of modifying SRK equation to
increase its accuracy in predicting the residual entropy as much as possible. The
modification was made by redefining the parameter α in SRK equation to be a
function of reduced pressure, acentric factor, and polarity factor for polar compounds
in addition to be originally function of reduced temperature and n parameter –which is
also function of acentric factor– by using statistical methods. This correlation is as
follows:

α =[1+n(γ)]2  , γ=-0.920338Pr-0.34091 +0.064049Tr4 ω +0.370002ω-Pr0.996932 Tr-4x
This new modified correlation decreases the deviations in the results obtained by
using SRK equation in calculating SR when comparing with the experimental data.
The AAD for 2791 experimental data points of 20 pure compounds is 4.3084 J/mol.K
while it becomes 2.4621 J/mol.K after modification. Thus SRK equation after this
modification gives more accurate results for residual entropy of superheated vapor of
pure 20 compounds than the rest of the equations mentioned above.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Engineering
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq
...Show More Authors

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the

... Show More
Publication Date
Sun Jul 22 2018
Journal Name
New Journal Of Chemistry
Jahn–teller distortion in 2-pyridyl-(1, 2, 3)-triazole-containing copper (II) compounds
...Show More Authors

The syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Ln ligands: L1 = 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2 = 2-(1-(4- chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3 = 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4 = 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5 = 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3- triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)- triazole (Ln) and two chloride ions as ligands, with the Cu–N(pyridine) bonds, Cu–N(triazole) and Cu–Cl bonds trans to each othe

... Show More
Publication Date
Wed Jan 18 2017
Journal Name
International Conference And Workshops On Basic And Applied Science
Identifying phenolic compounds in some genera belonging in the Amaranthaceae family by HPLC technique
...Show More Authors

Identifying phenolic compounds in some genera belonging in the Amaranthaceae family by HPLC technique

Publication Date
Wed Mar 01 2017
Journal Name
International Communications In Heat And Mass Transfer
Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN
...Show More Authors

In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and

... Show More
Crossref (116)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Environmental Pollution
Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models
...Show More Authors

View Publication
Crossref (102)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Energy Reports
Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid intelligence model
...Show More Authors

View Publication
Scopus (77)
Crossref (78)
Scopus Clarivate Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (64)
Crossref (55)
Scopus Clarivate Crossref
Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Synthesis, characterization, molecular docking, ADMET prediction, and anti-inflammatory activity of some Schiff bases derived from salicylaldehyde as a potential cyclooxygenase inhibitor
...Show More Authors

A series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref