Preferred Language
Articles
/
ijcpe-32
Prediction of Shear Wave velocity for carbonate rocks
...Show More Authors

In many oil fields only the BHC logs (borehole compensated sonic tool) are available to provide interval transit time (Δtp), the reciprocal of compressional wave velocity VP.

   To calculate the rock elastic or inelastic properties, to detect gas-bearing formations, the shear wave velocity VS is needed. Also VS is useful in fluid identification and matrix mineral identification.

   Because of the lack of wells with shear wave velocity data, so many empirical models have been developed to predict the shear wave velocity from compressional wave velocity. Some are mathematical models others used the multiple regression method and neural network technique.

   In this study a number of empirical models were considered to predict VS from VP. The models had been correlated and a general equation, based on statistical method, was established for carbonate rocks.

   The proposed equation, then, was examined using log data and good results observed.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Heliyon
Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production
...Show More Authors

Biodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–

... Show More
View Publication
Scopus (18)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Thu Dec 16 2021
Journal Name
Translational Vision Science & Technology
A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
...Show More Authors

View Publication
Scopus (40)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Evaluating Electrocoagulation Process for Water Treatment Efficiency Using Response Surface Methodology
...Show More Authors

The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Design and Implementation ofICT-Based Recycle-Rewarding System for Green Environment
...Show More Authors

This paper proposes a collaborative system called Recycle Rewarding System (RRS), and focuses on the aspect of using information communication technology (ICT) as a tool to promote greening. The idea behind RRS is to encourage recycling collectors by paying them for earning points. In doing so, both the industries and individuals reap the economical benefits of such system. Finally, and more importantly, the system intends to achieve a green environment for the Earth. This paper discusses the design and implementation of the RRS, involves: the architectural design, selection of components, and implementation issues. Five modules are used to construct the system, namely: database, data entry, points collecting and recording, points reward

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Zirconium Sulfate as Catalyst for Biodiesel Production by Using Reactive Distillation
...Show More Authors

Production of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.

 

       The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared  catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c

... Show More
View Publication Preview PDF
Publication Date
Sat May 24 2025
Journal Name
Iraqi Journal For Computer Science And Mathematics
Intrusion Detection System for IoT Based on Modified Random Forest Algorithm
...Show More Authors

An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (8)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Efficient approach for solving high order (2+1)D-differential equation
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks
...Show More Authors

The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the

... Show More
View Publication Preview PDF
Scopus (62)
Crossref (53)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (39)
Crossref (20)
Scopus Crossref