Forward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of the salts in the DS ranged (3.5 – 20% by wt), the temperature of DS ranged (20 – 50oC), and the flow rate of the FS and DS ranged (1 – 4 lit/min). It was observed that the optimum operating conditions are: concentration of salt = 20% by wt for CaCl2, temperature of DS = 50oC, and the flow rate of FS = 4 lit/min where at these conditions the maximum flux was obtained equal to 13.2 lit/m2.h or the total volume of the water transferred from the juice (during 3 hours and membrane area of 0.0135 m2) was 0.535 lit. NaCl performed much higher efficiency as osmotic agent than the others salts up to the concentration of 15.2%, but after 15.2% the CaCl2 was the best.
This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreIn this research , Aprocess ( LICVD) was used for producing silicon nitride powders with chemical compositon Si3N4 ,by using TEA-Co2 Laser to induc reaction in the gas phase, NH3 was used as on additive to SiH4. Reactant gases that were vibrationaly heated by absorbing energy emitted from TEA-Co2 Laser decomposes throug coillsion assisted multiple photon dissociation causing Si3N4 powders. By the dependence of the LICVD process on varios parameters such as Laser intensity , total gas pressure, partial pressures of SiH4 and NH3 were investigated. Dissociation rate as a function of Laser intensity and pressure was investigated. The powders obtained exhibit various colors from brown which is rich in Si to white.This
... Show MoreThe inhibition effect of crude juice of green and black olive on cancer cell line (RD) in vitro has been studied by depending on micro titration system . Eleven different concentration starting from (916-960) mg/ml of crude juice respectively ,for three periods of exposure(24-48-72)hours. The resulted showed that the inhibition effect dependent on type of olive fruit juice ,concentration of dose ,time of exposure and the high concentration of both type of olive juice increased the growth of cell line while other concentration caused decrease in different rates ,moreover the black juice was more effective than green and 48 hours' time exposure was the best for inhibition.
The current study was designed to evaluate the efficiency of broccoli plant in therapy of PCOS that induced for the first time by testosterone andriol (T.A).
Forty-eight immature female rats (21 days old) were divided into 6 groups (8 rats each) as follows: G1, animals were injected with sesame oil for 39 cascade days (control). G2, animals were injected with 1mg/100g b.w of T.A for 39 cascade days. G3, animals were injected with 1mg/100g b.w of T.A gathered with gavaged broccoli juice (b.j) for 39 cascade days. G4, animals were injected with sesame oil for cascade 39 days at the end of last injection were gavaged with d.w for 30 cascade days. G5, animals were injected with 1 mg/100g b.w of T.A for
... Show MoreOur country suffered from pollution translation as a result to the wars events, so, it is necessary to measure the amount of radiation in the fields that are of indirect contact with human life and health. The main aim of the present work is to measure the concentration of alpha emitters in tomato fruits collected from different farms in Al – Basra governorate in the south of Iraq. Nuclear track detectors of type CR – 39 are used as a detection device and Can technique as a detection technique. Results show that the maximum concentration recorded is sample no.7 of site Al – Rafidhya which was equal to (6.9621 ± 0.111) ppm and sample no.1 of site Lothan with concentration equals to (4.9236 ± 0.117) ppm. The minimum concentratio
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreThe aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of c
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreDesalination is a process where fresh water produces from high salinity solutions, many ways used for this purpose and one of the most important processes is membrane distillation (MD). Direct contact membrane distillation (DCMD) can be considered as the most prominent type from MD types according to ease of design and modus operandi. This work studies the efficiency of using DCMD operation for desalination brine with different concentration (1.75, 3.5, 5 wt. % NaCl). Frame and plate cell was used with flat sheet PTFE hydrophobic type membrane. The study proves that MD is an effective process for desalination brines with feed temperature less than 60˚C especially for feed with low TDS. 37˚C, 47˚C, and 57˚C was feed t
... Show More