The aim of this research is to study the factors affecting drag coefficient (C d ) in
non-Newtonian fluids which are the rheological properties ,concentrations of non-
Newtonian fluids, particle shape, size and the density difference between particle and
fluid .Also this study shows drag coefficient (C d ) and particle Reynolds' number (Re
P ) relationship and the effect of rheological properties on this relationship.
An experimental apparatus was designed and built, which consists of Perspex pipe
of length of 160 cm. and inside diameter of 7.8 cm. to calculate the settling velocity,
also electronic circuit was designed to calculate the falling time of particles through
fluid.
Two types of solid particles were used; glass spheres and crushed rocks as
irregularly shaped particles with different diameters and compared with each other.
The concept of equivalent spherical diameter (D S ) was used to calculate the
diameters of irregularly shaped particles.
The flow behavior for Non-Newtonian fluids was represented by Power-Law model.
Two types of polymers were used, Carboxy Methyl Cellulose CMC with
concentrations of (3.71, 5, 15 and 17.5) g/l and polyacrylamide with concentrations of
(2, 4 and 6) g/l.
The results showed that the drag coefficient decreased with increasing settling
velocity and particle diameters and sizes; and increased as fluid become far from
Newtonian behavior and concentrations and the density difference between particle
and fluid.
The results also showed that the rheological properties of Non-Newtonian fluids
have a great effect on the drag coefficient and particle Reynolds number relationship,
especially in laminar-slip regime and decreases or vanishes at transition and turbulentslip
regimes.
New correlations were obtained which relates drag coefficient with concentrations
of polymers and with flow behavior indices for spherical and irregular shaped
particles in Carboxy Methyl Cellulose CMC and polyacrylamide solutions.
High temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.
Oil sector is one of the most important sectors affecting the ecological balance, as activity contributes to the oil companies to influence their working environment, both during the oil exploration and extraction process or during transfer from one place to another process. We will try through this research put an environmental audit program proposal takes into account all the financial aspects, commitment and performance, according to the laws and regulations and agreements as well as relevant international standards, was based on research on the premise that the development of an environmental proposal auditing program that includes environmental controls on oil industry phases which helps reduce or minimize environmental pollutants B
... Show MoreZernike Moments has been popularly used in many shape-based image retrieval studies due to its powerful shape representation. However its strength and weaknesses have not been clearly highlighted in the previous studies. Thus, its powerful shape representation could not be fully utilized. In this paper, a method to fully capture the shape representation properties of Zernike Moments is implemented and tested on a single object for binary and grey level images. The proposed method works by determining the boundary of the shape object and then resizing the object shape to the boundary of the image. Three case studies were made. Case 1 is the Zernike Moments implementation on the original shape object image. In Case 2, the centroid of the s
... Show MoreTwo means used for saving fish samples, namely Freezing and Preservatives represented by Alcohol and Formalin. The Freezing was used in saving samples collected newly, in addition to use Alcohol and Formalin with different concentrations 70% of Alcohol and 10% of Formalin. The concentrations of some heavy metal elements were examined, such as Potassium, Phosphorus, Calcium, Manganese, Magnesium, Zinc, Iron, Copper and Boron in samples saved in Formalin and Alcohol and frozen at different durations. The concentration of some elements has been changed during the saving duration. The study was performed on the concentration of heavy elements in the Liza abu muscles of saved and frozen fish.
MT Suhail, SA Hussein, MN Abdulhussein, WQ Abdaullateef, M khairallah Aid…, Migration Letters, 2024
<p>The objective of this paper is to study the dynamical behavior of an aquatic food web system. A mathematical model that includes nutrients, phytoplankton and zooplankton is proposed and analyzed. It is assumed that, the phytoplankton divided into two compartments namely toxic phytoplankton which produces a toxic substance as a defensive strategy against predation by zooplankton, and a nontoxic phytoplankton. All the feeding processes in this food web are formulating according to the Lotka-Volterra functional response. This model is represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability
... Show MoreGaslift reactors are employed in several bioapplications due to their characteristics of cost-effectiveness and high efficiency. However, the nutrient and thermal gradient is one of the obstacles that stand in the way of its widespread use in biological applications. The diagnosis, analysis, and tracking of fluid paths in external draft tube gaslift bioreactor-type are the main topics of the current study. Several parameters were considered to assess the mixing efficiency such as downcomer-to-rizer diameter ratio (Ded/Dr), the position of the diffuser to the height of bioreactor ratio (Pd/Lr), and gas bubble size (Db). The multiple regression of liquid velocity indicates the optimal setting: Ded/Dr is (0.5), Pd/Lr is (0.02), and Db
... Show More