The corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that hydroquinone is the best among the other scavengers in reducing the corrosion rate at the temperatures and pressures of this investigation and most efficient in the consumption of oxygen especially 80 ppm, it reduces the concentration of oxygen in water from 8.2 to 0.8 ppm, while the ascorbic acid reduces the oxygen concentration to 1.4 and monoethanolamine reduces the concentration of oxygen to 1.9 . It has been observed that hydroquinone reacts with oxygen quickly and at low temperatures while the other scavengers react slowly with oxygen.
Cu X Zn1-XO films with different x content have been prepared by
pulse laser deposition technique at room temperatures (RT) and
different annealing temperatures (373 and 473) K. The effect of x
content of Cu (0, 0.2, 0.4, 0.6, 0.8) wt.% on morphology and
electrical properties of CuXZn1-XO thin films have been studied.
AFM measurements showed that the average grain size values for
CuXZn1-xO thin films at RT and different annealing temperatures
(373, 473) K decreases, while the average Roughness values increase
with increasing x content. The D.C conductivity for all films
increases as the x content increase and decreases with increasing the
annealing temperatures. Hall measurements showed that there are
two
Introduction: Diabetic foot infections are one of the most severe complications of diabetes. This study was aimed to determine the common bacterial isolates of diabetic foot infections and the in vitro antibiotic susceptibility then treatment.
Methods: A swab was taken from the foot ulcer, and the aerobic bacteria were isolated and identified by cultural, microscopic and biochemical test, then by api-20E system. After that their antibiotic susceptibility pattern was determined. Then local and systemic treatment was used to treat the diabetic foot patients.
Results: Bacterial isolates belonging to twelve species were obtained from diabetic foot patients. Gram (-) bacteria were the predominant pathogens in the diabetic foot infection
In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C
... Show MoreThe properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength
... Show MoreTiO2 thin films have been deposited at different concentration of
CdO of (x= 0.0, 0.05, 0.1, 0.15 and 0.2) Wt. % onto glass substrates
by pulsed laser deposition technique (PLD) using Nd-YAG laser
with λ=1064nm, energy=800mJ and number of shots=500. The
thickness of the film was 200nm. The films were annealed to
different annealing (423 and 523) k. The effect of annealing
temperatures and concentration of CdO on the structural and
photoluminescence (PL) properties were investigated. X-ray
diffraction (XRD) results reveals that the deposited TiO2(1-x)CdOx
thin films were polycrystalline with tetragonal structure and many
peaks were appeared at (110), (101), (111) and (211) planes with
preferred orientatio
Fourier Transform-Infrared (FT-IR) spectroscopy was used to analyze gasoline engine oil (SAE 5W20) samples that were exposed to seven different oxidation times (0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h) to determine the best wavenumbers and wavenumber ranges for the discrimination of the oxidation times. The thermal oxidation process generated oil samples with varying total base number (TBN) levels. Each wavenumber (400–3900 cm−1) and wavenumber ranges identified from the literature and this study were statistically analyzed to determine which wavenumbers and wavenumber ranges could discriminate among all oxidation times. Linear regression was used with the best wavenumbers and wavenumber ranges to predict oxidation time.
... Show MoreThe purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.
Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of prod