The hydrodynamics of a co-current down flow bubble column has been investigated with air – water system. A Perspex bubble column of 5cm in diameter and 1.5m height is used as a test contactor using nozzles of 7, 8 and 9 mm diameter for air-water distributing. The column is provided with three electro-resistivity needle probes for bubble detection.
Experimental work is carried out with air flow rates from 0.09 to 0.45 m3/hr and liquid flow rates from 0.65 to 1.1m3/hr in order to study the effects of superficial gas velocity, nozzle diameter and liquid flow rate on the characteristics of hydrodynamic interactions viz. gas hold up, bubble diameter and bubble velocity by using two technical methods, direct height measurements for air-water mixture in the column and resistivity probe techniques.
Gas hold up is found to be progressively increased with increasing superficial gas velocity and with decreasing liquid flow rate. Lower gas hold up is obtained with smaller nozzle diameter. However, gas hold up in two-phase zone is considerably higher than the corresponding value in mixing zone.
The mean bubble velocity is increased with increasing superficial gas velocity, liquid flow rate and nozzle diameter for both mixing and two phase zones. Experimental data are found to be fairly fitted with the Drift Flux model of Zuber and Findly.
The bubble diameter is considerably increased with increasing superficial gas velocity and with decreasing liquid flow rate, whereas it is slightly influenced by nozzle diameter. However, the bubbles in two-phase zone are relatively bigger than those observed in mixing zone. Finally, mathematical correlations have been developed from the experimental data to describe the gas hold up and bubble velocity in the uniform two-phase zone.
Background: Polymeric composites have been widely used as dental restorative materials. A fundamental knowledge and understanding of the behavior of these materials in the oral cavity is essential to improve their properties and performance. The goal of this study was to measure water sorption of four composite resins containing different filler and resin matrix contents. Materials and method: Resin composite specimens giomer (Beautifil II) Filtek™ P90, Filtek™ Z350 XT, and Tetric N Ceram were prepared in a cylindrical mould of 3mm thickness and 6mm diameter (n=10) and light cured . All specimens placed in silica-gel desiccators at 37˚C for seven days, a constant weight was obtained. All samples were immersed in deionized distill
... Show MoreThe major climate changes that have affected the planet in addition to wave the big drought plaguing the study area, including the lack of water for imports Badra River fatigue because of the Iran constructing dams on this river and make use of the waters for the benefitof its territory. The subject of finding sources of water has become available with the possibility of exploiting them in an exemplary manner is one of the key things in order to be exploited somewhere.
The study area was chosen within the eastern border of the province of Wasit within the district of Badra border, an area of (1557.5 km2) almost "to study the characteristics of hydrological and identify possibilities for water harvesting them. In this study was conduct
In the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res
... Show MoreIn this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10
... Show More

