Many carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system; thus the exact solutions of diffusivity equation could be used explicitly for each region. The reservoir-aquifer zones were linked by a capillary transition zone that reflected the pressure difference across the free water level.
The principle of superposition theorem was applied to perform this link across the free water level to estimate the reflected aquifer pressure drop behavior that holds the fluid contacts in their equilibrium positions.
The results of originally oil water contact positions generated by the proposed model were compared with data obtained from a carbonate oil field; the results given by the model showed full agreement with the actual field data.
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Monitoring the river’s water quality is important to predict the environmental risk. The Tigris River is Baghdad’s main source for living organisms, drinking water, and agro-industrial purposes. Three selected sites were carried out using different water quality parameters from July 2017 to April 2018 in the Tigris River in Baghdad. Fourteen water quality parameters: water temperatures, turbidity, electrical conductivity, pH, calcium, magnesium, chloride, sulfate, phosphate, dissolved oxygen (DO), alkalinity, total hardness, total dissolved substances TDS, and biological oxygen demand (BOD5). According to CCME WQI analysis, the water quality of Tigris River water was Fair for aqua
The experiment was conducted in the fields belonging to the Department of Horticulture, College of Agricultural Engineering Sciences, University of Baghdad, at Al-Jadriya Complex / Station A, for the autumn season of 2022-2023. The aim was to study the effect of water fish irrigation and water lens plant extract foliar application on the growth and productivity of beetroot. The experiment included two factors: the first factor was water fish irrigation with five concentrations (A) Control treatment (irrigation with river water and recommended fertilization), (B) Water fish irrigation at 25% concentration, (C) water Fish irrigation at 50% concentration, (D) Water Fish irrigation at 75%
A design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings i
... Show MoreObjective. Infection with Coxsackie virus. This virus that damages pancreatic cells, has long been linked to the onset of insulin-dependent diabetic mellitus (IDDM). Pro-inflammatory cytokines can be produced as a result of this illness. Tumor necrosis factor-a is one of these pro-inflammatory cytokines. Materials and Methods. Blood sample were collected from 180 Iraqi participants. Ninety of them is type 1 diabetic patients and other 90 is healthy control .both groups were tested for the incidence of Coxsackie virus B IgG. So the patients groups is divided to two groups according to sero positivity of CVB-IgG .all 180 patients tested to measure of level of TNF-α. Results. The Results showed increasing in levels of TNF-α in CBV po
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreAbstract
Objective / Purpose: Online social relationships through the emergence of Web 2.0 applications have become a new trend for researchers to study the behavior of consumers to shop online, as well as social networking sites are technologies that opened up opportunities for new business models. Therefore, a new trend has emerged, called social trade technology. In order to understand the behavioral intentions of the beneficiaries to adopt the technology of social trade, the current research aims at developing an electronic readiness framework and UTAUT model to understand the beneficiary's adoption of social trade technology.
Design/ methodology/ Approach: To achieve the obje
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More