Horizontal wells are of great interest to the petroleum industry today because they provide an attractive means for improving both production rate and recovery efficiency. The great improvements in drilling technology make it possible to drill horizontal wells with complex trajectories and extended for significant depths.
The aim of this paper is to present the design aspects of horizontal well. Well design aspects include selection of bit and casing sizes, detection of setting depths and drilling fluid density, casing, hydraulics, well profile, and construction of drillstring simulator. An Iraqi oil field (Ajeel field) is selected for designing horizontal well to increase the productivity. Short radius horizontal well is suggested for the developing the field since many drilled vertical wells are exists
A soft string model was programmed to predict the imposed loads on suggested drillstring. Six operating conditions of drillstring includes rotating off bottom, pick up without rotation, slack off without rotation, pick up with rotation, slack off with rotation, and sliding ,were considered. Also, two buckling modes of drill string were estimated. According to drillstring simulator results, short radius well of build rate 90 deg/100 ft could be implemented without exceeding the strength limits of the suggested drillstring.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show More