Preferred Language
Articles
/
ijcpe-251
Preparation and Characterization of Nay Zeolite for Biodiesel Production
...Show More Authors

Iraqi kaolin was used for the preparation and characterization of NaY zeolite for biodiesel production via esterification reaction. Oleic acid was used usually as a typical simulated feedstock of high acid number for the esterification reaction.

   The chemical composition for the prepared Nay zeolite is as following:  (Ca2.6Na1.K0.1)(Al6.3Si17.7)O48.16H2O, the silica to alumina ratio in the prepared catalyst was found equal to 2.6 and Na2O content was 12.26 wt. %, with relative crystallinity equal to 147.4 % obtained by the X-ray diffraction. The surface area result shows that the prepared catalyst has 330 m2/g. While, the measured pore volume by nitrogen adsorption was equal to 0.35 cm3/ g. SEM images show notable differences between the kaolin crystal and prepared NaY crystal.

   The effect of NaY zeolite, as a loaded catalyst in the esterification of oleic acid reaction did not show any significant change of oleic acid conversion for catalyst load more than 5 wt. %. The reused NaY zeolite is loses 31 % of its activity because of that the pores are filled with water and other organic molecules and that may cause poisoning the catalyst.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 16 2021
Journal Name
Translational Vision Science & Technology
A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
...Show More Authors

View Publication
Scopus (40)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Evaluating Electrocoagulation Process for Water Treatment Efficiency Using Response Surface Methodology
...Show More Authors

The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Jun 24 2020
Journal Name
Journal Of Engineering
Using Steel Slag for Stabilizing Clayey Soil in Sulaimani City-Iraq
...Show More Authors

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil.

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Sat May 24 2025
Journal Name
Iraqi Journal For Computer Science And Mathematics
Intrusion Detection System for IoT Based on Modified Random Forest Algorithm
...Show More Authors

An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (8)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Efficient approach for solving high order (2+1)D-differential equation
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks
...Show More Authors

The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the

... Show More
View Publication Preview PDF
Scopus (62)
Crossref (53)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (39)
Crossref (20)
Scopus Crossref
Publication Date
Mon Jul 15 2019
Journal Name
Iet Microwaves, Antennas & Propagation
Hilbert metamaterial printed antenna based on organic substrates for energy harvesting
...Show More Authors

Abstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to

... Show More
View Publication
Scopus (55)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Crossref