The present study deals with the application of an a bundant low cost biosorbent sunflower shell for metal ions removal. Lead, Cadmium and Zinc were chosen as model sorbates. The influences of initial pH, sorbent dosage, contact time, temperature and initial metal ions concentration on the removal efficiency were examined. The single ion equilibrium sorption data were fitted to the non-competitive Langmuir and Freundlich isotherm models. The Freundlich model represents the equilibrium data better than the Langmuir model. In single, binary and ternary component systems,Pb+2 ions was the most favorable component rather than Cd+2 and Zn+2 ions. The biosorption kinetics for the three metal ions followed the pseudo-second order kinetics indicating that the chemical sorption was the rate-limiting step. The thermodynamic parameters including free energy ( G0), enthalpy and entropy changes for Pb2+,Cd2+ and Zn2+ ions indicated that the sorption process was feasible,spontaneous,and endothermic in the temperature range 20-50 0 C .Desorption of the three metals ions from the biosorbent was effectively achieved in a 0.2 mol L-1 HCl solution.
The catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor
using active carbon prepared from date stones as catalyst by ferric and zinc chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account
... Show MoreA new ligand (H4L) and its complexes with ( ZnII, CdII and HgII) were prepared. This ligand was prepared in two steps. In the first step a solution of terephthaldehyde in methanol was reacted under reflux with 1,2-phenylenediamine to give an precursor compound which reacted in the second step with 2,4-dihydroxybenzaldehyde to give the ligand. The complexes were then synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods FT-IR, UV-Vis, 1 HNMR, and atomic absorption, chloride content, HPLC, mole-ratio determination. in addition to conductivity measurement. The data of these measurements suggest a distorted tetrahedral geometry for ZnII, C
... Show MoreSome physical properties enthalpy (?H), entropy (?s), free energy (?G),capacities(?cp?) and Pka values) for valine in dimethyl foramideover the temperature range 293.15-318.15K, were determined by direct conductance measurements. The acid dissociation at six temperature was examined at solvent composition x2) involving 0.141 of dimethyl foramide . As results, calculated values have been used to determine the dissociation constant and the associated thermodynamic function for the valine in the solvent mixture over temperatures in the range 293.15-318.15 k. The Pka1, and Pka2 were increased with increasing temperature.
sanaa tareq, Baghdad Science Journal, - Cited by 1
Four new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
In the present work, the phthalic acid (phthH2) and 1.10 phenonthroline (phen), and their complexes were synthesized and isolated as [M(phth)(phen)2], Mn(II), Fe(II), Co(II), Ni(II) Cu(II), Zn(II), and Cd(II) ions. These complexes were characterized by elemental analysis, melting point, conductivity, percentage metal, UV–Vis, FT-IR, and magnetic moment measurements. The molar conductance indicates that all the metal complexes in DMSO are nonelectrolytic. phthalic acid (phtha), and 1,10-Phenanthroline (phen), behaved as bidentate, coordinating to the metal ion through their two oxygen and two pyridinyl nitrogen atoms respectively, as corroborated by. Electronic spectra, FTIR, spectroscopy amusement indicated that all the metal complexes ad
... Show MoreViscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.