The present study deals with the application of an a bundant low cost biosorbent sunflower shell for metal ions removal. Lead, Cadmium and Zinc were chosen as model sorbates. The influences of initial pH, sorbent dosage, contact time, temperature and initial metal ions concentration on the removal efficiency were examined. The single ion equilibrium sorption data were fitted to the non-competitive Langmuir and Freundlich isotherm models. The Freundlich model represents the equilibrium data better than the Langmuir model. In single, binary and ternary component systems,Pb+2 ions was the most favorable component rather than Cd+2 and Zn+2 ions. The biosorption kinetics for the three metal ions followed the pseudo-second order kinetics indicating that the chemical sorption was the rate-limiting step. The thermodynamic parameters including free energy ( G0), enthalpy and entropy changes for Pb2+,Cd2+ and Zn2+ ions indicated that the sorption process was feasible,spontaneous,and endothermic in the temperature range 20-50 0 C .Desorption of the three metals ions from the biosorbent was effectively achieved in a 0.2 mol L-1 HCl solution.
Will address this research interaction and coordination between fiscal and monetary policies and the impact of this interaction and coordination on economic stability and growth، and how the financial implications of monetary policy may stimulate action monetary policy and treatment side effects and the nature of responsiveness and bounce between procedures both two policies and their impact on the balance of overall economic and explained in the folds of searchjustifications coordination and the extent necessary in order to address the imbalances in economic activity through twinning actions of monetary and fiscal، has embodied this coordination and interaction between policies and their impact m
... Show MoreEquilibrium and rate of mixing of free flowing solid materials are found using gas fluidized bed. The solid materials were sand (size 0.7 mm), sugar (size0.7 mm) and 15% cast iron used as a tracer. The fluidizing gas was air with velocity ranged from 0.45-0.65 m/s while the mixing time was up to 10 minutes. The mixing index for each experiment was calculated by averaging the results of 10 samples taken from different radial and axial positions in fluidized QVF column 150 mm ID and 900 mm height.
The experimental results were used in solving a mathematical model of mixing rate and mixing index at an equilibrium proposed by Rose. The results show that mixing index increases with inc
... Show MoreShell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
Removal of Congo red, Rhodamine B, and Dispers Blue dyes from water solution have been achieved using Flint Clay as an adsorbent. The adsorption was studied as a function of contact time, adsorbent dose, pH, and temperature under batch adsorption technique. The equilibrium data fit with Langmuir, Freundlich and Toth models of adsorption and the linear regression coefficient R2 was used to elucidate the best fitting isotherm model. Different thermodynamic parameters, namely Gibb’s free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. Batch technique has been employed for the kinetic measurements and the adsorption of the three dyes follows a second order rate kinetics. The kinetic investigations al
... Show MorePregnancy is a stressful condition in which many physiological and metabolic functions are altered to a considerable extent . Pregnancy is a physiological state accompanied by a high-energy demand and an increased oxygen requirement. The present study aim to study selenium ,zinc cupper in the first trimester of pregnancy. The study group comprised of Fourty five pregnant women and twenty six non pregnant women as control . The samples were taken from pregnant women who come to several heath center in Baghdad city to cheak up. Laboratory investigations including Cupper, Ceruloplasmin, Total Antioxidant (TAA), malondialdehyde (MDA), glutathione (GSH), Zinc, Uric acid, and Selenium had been measured in pregnant women and control . Th
... Show More Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because
Metal nanoparticles can serve as an efficient nano-heat source with confinement photothermal effects. Thermo-plasmonic technology allows researchers to control the temperature at a nanoscale due to the possibility of precise light propagation. The response of opto-thermal generation of single gold-silica core-shell nanoparticle immersed in water and Poly-vinylpyrrolidone surrounding media is theoretically investigated. Two lasers (CW and fs pulses) at the plasmonic resonance (532 nm) are utilized. For this purpose, finite element method is used via COMSOL multiphysics to find a numerical computation of absorption cross section for the proposed core –shell NP in different media. Thermo-plasmonic response for both lasers is studied. The
... Show MoreIn this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreIn this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show More