The present work is devoted to investigate the performance of a homemade Y-shape catalytic microreactor for degradation of dibenzothiophene (DBT), as a model of sulphur compounds including in gas oil, utilizing solar incident energy. The microchannel was coated with TiO2 nanoparticles which were used as a photocatalyst. Performance of the microreactor was investigated using different conditions (e.g., DBT concentration, LHSV, operating temperature, and (H2O2/DBT) ratio). Our experiments show that, in the absence of UV light, no reaction takes place. The results revealed that outlet concentration of DBT decreases as the mean residence time in the microreactor increases. Also, it was noted that operating temperature showed a positive impact on the degradation rate of DBT while LHSV showed a different image. The results reported an optimum (H2O2/DBT) ratio which gave maximum conversion of DBT which vary with initial concentration. Kinetic study was carried out which confirmed that desulfurization of DBT followed a pseudo-first order reaction at 30 and 50oC, respectively. However deviation from linearity was observed at 60oC. Comparison between microreactor´s performance and performance of batch reactors from published literature were illustrated. The Comparison confirmed the unique characteristics of the microreactor.
The injection of Low Salinity Water (LSWI) as an Enhanced Oil Recovery (EOR) method has recently attracted a lot of attention. Extensive research has been conducted to investigate and identify the positive effects of LSWI on oil recovery. In order to demonstrate the impact of introducing low salinity water into a reservoir, simulations on the ECLIPSE 100 simulator are being done in this work. To simulate an actual reservoir, an easy static model was made. In order to replicate the effects of injecting low salinity water and normal salinity, or seawater, the reservoir is three-phase with oil, gas, and water. It has one injector and one producer. Five cases were suggested to investigate the effect of low salinity water injection with differen
... Show MoreIn this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show MoreIn a hybrid cooling solar thermal systems , a solar collector is used to convert solar energy into heat energy in order to super heat the refrigerant leaving the compressor, and this process helps in the transformation of refrigerant state from gaseous state to the liquid state in upper two-thirds of the condenser instead of the lower two-thirds such as in the traditional air-conditioning systems and this will reduce the energy needed to run the process of cooling .In this research two systems with a capacity of 2 tons each were used, a hybrid air-conditioning system with an evacuated tubes solar collector and a traditional air-conditioning system . The refrigerant of each type was R22.The comparison was in the amou
... Show MoreSilver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different︣︢︡ ︠︣1thickness 100 150 and 200 nm on the glass Substrate and p2Si wafer to produce AIAS/p3Si heterojunctionsolarcell4 Structural optical electrical and photovoltaicproperties6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectra1photometer to study the energy6gap The
... Show MoreEstimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar
... Show MoreAbstract: The natural dye, Curcumin, was extracted from Curcuma longa using as a sensitizer in two types of dye sensitized solar cell (DSSC), and their characteristics were studied. The absorption spectrum of the dye solutions, as well as the wavelength of the maximum absorbance of the dye loaded TiO2 film has been studied. The X-Ray diffraction pattern of TiO2 film made with Doctor-Blading technique shown that the grain size of TiO2 was equal to be 40 nm. The electrical performances in terms of short circuit current, open circuit voltage and power conversion efficiency of cells were investigated.
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization design (CRD), with three replicates for each treatment at th
... Show MoreThe performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des