The present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD, and Phosphate) were investigated over the days of the experiment. Water flux and membrane fouling were not significantly affected by MLSS concentration at low level and this effect increase with increasing MLSS concentration (4000–10000 mg/L). Besides, water flux was severely affected by elevated salinity of the aeration tank. OMBR showed high removal of COD (96%) and FO membrane revealed high retention of phosphate (97%) but retention for nitrate was relatively low (72%). The sparingly soluble salts in the influent, bioreactor, draw solution, and RO effluent were detected through the experiment. The results showed flux decline with time to about 47% from the initial flux and two osmotic backwashing were applied at day 7 and 14 during the operation and the flux restored approximately 30% of its loss. Side stream and submerged configurations revealed nearly similar response over the experiments while side stream module showed better water flux (7.0 LMH) than submerged (6.1 LMH). The results showed that the concentration of inorganic ions is below the limits that may cause severe scaling.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
The present study is concerned with the role of income tax in implementing economic goals in Iraq and treating the problems and pitfalls in the Iraq economy.
The study also aims at investigating the role of income tax in attracting promising favorite effects into economy.
The study was performed on data covering the period (2003 - 2012) with respect to the variables of (income tax, oil profits) as independent variables and (private consuming expenditure, private investmental expenditure, and standard figure of prices) as dependent variables. To analyze these data, a number of statistical descriptive and analytical techniques were used such as (percentage, standard variance, mediums, F test, T test and SPSS). It has been c
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe large number of failure in electrical power plant leads to the sudden stopping of work. In some cases, the necessary reserve materials are not available for maintenance which leads to interrupt of power generation in the electrical power plant unit. The present study, deals with the determination of availability aspects of generator in unit 5 of Al-Dourra electric power plant. In order to evaluate this generator's availability performance, a wide range of studies have been conducted to gather accurate information at the level of detail considered suitable to achieve the availability analysis aim. The Weibull Distribution is used to perform the reliability analysis via Minitab 17, and Artificial Neural Networks (ANNs) by approaching o
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreProsthetic is an artificial tool that replaces a member of the human frame that is absent because of ailment, damage, or distortion. The current research activities in Iraq draw interest to the upper limb discipline because of the growth in the number of amputees. Thus, it becomes necessary to increase researches in this subject to help in reducing the struggling patients. This paper describes the design and development of a prosthesis for people able and wear them from persons who have amputation in the hands. This design is composed of a hand with five fingers moving by means of a gearbox ism mechanism. The design of this artificial hand has 5 degrees of freedom. This artificial hand works based on the principle of &n
... Show MoreThe performance grading system (superpave) has provided means to incorporate binder characteristics with
pavement failure types. It’s a comprehensive system that relates climate, traffic conditions and aging with
critical pavement distress. The objective of this paper is to develop an improved asphalt binder grading
system for Iraq based on the principal of superpave. The country was divided into different zones according
to the highest and lowest temperature ranges and traffic loading. The Performance graded binder proposed
for each zone was compared with some States of USA that have same hot weather of Iraq by using Long
Term Pavement Performance (LTPP v3.1) software. Iraqi asphalt samples were tested using the Supe