The present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD, and Phosphate) were investigated over the days of the experiment. Water flux and membrane fouling were not significantly affected by MLSS concentration at low level and this effect increase with increasing MLSS concentration (4000–10000 mg/L). Besides, water flux was severely affected by elevated salinity of the aeration tank. OMBR showed high removal of COD (96%) and FO membrane revealed high retention of phosphate (97%) but retention for nitrate was relatively low (72%). The sparingly soluble salts in the influent, bioreactor, draw solution, and RO effluent were detected through the experiment. The results showed flux decline with time to about 47% from the initial flux and two osmotic backwashing were applied at day 7 and 14 during the operation and the flux restored approximately 30% of its loss. Side stream and submerged configurations revealed nearly similar response over the experiments while side stream module showed better water flux (7.0 LMH) than submerged (6.1 LMH). The results showed that the concentration of inorganic ions is below the limits that may cause severe scaling.
Gypsum Plaster is an important building materials, and because of the availabilty of its raw materials. In this research the effect of various additives on the properties of plaster was studied , like Polyvinyl Acetate, Furfural, Fumed Silica at different rate of addition and two types of fibers, Carbon Fiber and Polypropylene Fiber to the plaster at a different volumetric rate. It was found that after analysis of the results the use of Furfural as an additive to plaster by 2.5% is the optimum ratio of addition to that it improved the flexural Strength by 3.18%.
When using Polyvinyl Acetate it was found that the ratio of the additive 2% is the optimum ratio of addition to the plaster, because it improved the value of the flexural stre
The process of risk assessment in the build-operate transfer (BOT) project is very important to identify and analyze the risks in order to make the appropriate decision to respond to them. In this paper, AHP Technique was used to make the appropriate decision regarding response to the most prominent risks that were generated in BOT projects, which includes a comparison between the criteria for each risk as well as the available alternatives and by mathematical methods using matrices to reach an appropriate decision to respond to each risk.Ten common risks in BOT contracts are adopted for analysis in this paper, which is grouped into six main risk headings.The procedures followed in this paper are the questionnaire method
... Show MoreObject tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this
... Show MoreSome problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used t
... Show MoreIn this paper a decoder of binary BCH code is implemented using a PIC microcontroller for code length n=127 bits with multiple error correction capability, the results are presented for correcting errors up to 13 errors. The Berkelam-Massey decoding algorithm was chosen for its efficiency. The microcontroller PIC18f45k22 was chosen for the implementation and programmed using assembly language to achieve highest performance. This makes the BCH decoder implementable as a low cost module that can be used as a part of larger systems. The performance evaluation is presented in terms of total number of instructions and the bit rate.
Drilling fluid loss during drilling operation is undesirable, expensive and potentially hazardous problem.
Nasiriyah oil field is one of the Iraqi oil field that suffer from lost circulation problem. It is known that Dammam, um-Radoma, Tayarat, Shiranish and Hartha are the detecting layers of loss circulation problem. Different type of loss circulation materials (LCMs) ranging from granular, flakes and fibrous were used previously to treat this problem.
This study presents the application of rice as a lost circulation material that used to mitigate and stop the loss problem when partial or total losses occurred.
The experim
... Show MoreThe flow measurements have increased importance in the last decades due to the shortage of water resources resulting from climate changes that request high control of the available water needed for different uses. The classical technique of open channel flow measurement by the integrating-float method was needed for measuring flow in different locations when there were no available modern devices for different reasons, such as the cost of devices. So, the use of classical techniques was taken place to solve the problem. The present study examines the integrating float method and defines the parameters affecting the acceleration of floating spheres in flowing water that was analyzed using experimental measurements. The me
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show More