The adsorption of hexavalent chromium by preparing activated carbon from date seeds with zinc chloride as chemical activator and granular date seeds was studied in a batch system. The characteristics of date seeds and prepared activated carbon (ZAC) were determined and found to have a surface area 500.01 m2/g and 1050.01 m2/g , respectively and iodine number of 485.78 mg/g and 1012.91 mg/g, respectively. The effects of PH value (2-12), initial sorbate concentration(50-450mg/L), adsorbent weight (0.004-0.036g) and contact time (30-150 min) on the adsorption process were studied . For Cr(VI) adsorption on ZAC, at 120 min time contact, pH solution 2 and 0.02 adsorbent weight will achieve an amount of 35.6 mg/g adsorbed . While when use date seeds as adsorbent , conditions of 3 solution pH, 0.02 absorbent weight , and 120 contact time gave 26.49 mg/g adsorbed amount. Using both Langmuir, Freundlich and Sips models were explain the dsorption isotherms. It declare that the Sips model fits well with the experimental data with a maximum Cr( VI) adsorption capacity for (ZAC) and granular date stone 233.493 and 208.055 mg/g, respectively . The kinetics data which obtained at different initial Cr(VI) concentrations were examined by using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models . The result gained showed that the second-order model was only describing well the empirical kinetics data of both (ZAC) and granular date seeds. It was noticed that the granular date seeds has adsorption performance lower than the (ZAC).
A mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25
... Show MoreHydrogen productions were achieved by irradiating ethanol ic aqueous solutions (20%. v/v) containing mixtures of the ligand 2,4- dimethoxybcnzylidene-2-hydroxy aniline (HL) or one of i ts complexes (ML2) wi th the following divalent ions: fVbl (II), Fc(IT), Co(II). Ni( rt ), Cu(H) and Zn (11), as photosensi1izers, methyl viol ogen (MY.:-) as electron acceptor. ethylene diamine  
... Show MoreIn this study, we conducted a series of polymerization studies of hexyl methacrylate in dimethyl sulfoxide with (0.1 - 0.4) mol dm-3 of monomer and (1 10-3 – 4 10-3) mol dm-3 of benzoyl peroxide as initiators at 70 °C. Using the well-known conversion vs. time technique, the effects of initiator and monomer concentration on the rate of polymerization (Rp) were studied. An initiator of order 0.35 was obtained in accordance with theory and a divergence from normal kinetics was detected with an order of 1.53 with respect to monomer concentration. The activation energy was determined to be (72.90) kJ mol-1, which does not correspond to the value of most thermally initiated m
... Show MoreChromium tanned leather wastes (CTLW) and vegetable tanned leather wastes (VTLW) were used as adsorbent materials to remove the Biebrich scarlet dye (BS), as an anionic dye from wastewater, using an adsorption method. The effects of various factors, such as weight of leather waste, time of shaking, and the starting concentration of Biebrich scarlet dye, temperature and pH were studied. It described the adsorption process using Langmuir and Freundlich isotherm models. The obtained results agreed well with the Langmuir model, and the maximum adsorption capacities of CTLW and VTLW were 73.5294 and 78.1250 mg.g⁻¹, respectively, suggesting a monolayer adsorption process. The adsorption kinetic was found to follow a pseudo-second-order kinetic
... Show MoreChromium tanned leather wastes (CTLW) and vegetable tanned leather wastes (VTLW) were used as adsorbent materials to remove the Biebrich scarlet dye (BS), as an anionic dye from wastewater, using an adsorption method. The effects of various factors, such as weight of leather waste, time of shaking, and the starting concentration of Biebrich scarlet dye, temperature and pH were studied. It described the adsorption process using Langmuir and Freundlich isotherm models. The obtained results agreed well with the Langmuir model, and the maximum adsorption capacities of CTLW and VTLW were 73.5294 and 78.1250 mg.g⁻¹, respectively, suggesting a monolayer adsorption process. The adsorption kinetic was found to follow a pseudo-second-o
... Show MoreThis paper concerns is the preparation and characterization of a bidentate ligand [4-(5,5dimethyl-3-oxocyclohex-1-enylamino)-N-(5-methylisoxazol-3-yl) benzene sulfonamide]. The ligand was prepared from fusing of sulfamethoxazole and dimedone at (140) ºC for half hour. The complex was prepared by refluxing the ligand with a bivalent cobalt ion using ethanol as a solvent. The prepared ligand and complex were identified using Spectroscopic methods. The proposed tetrahedral geometry around the metal ions studied were concluded from these measurements. Both molar ratio and continuous variation method were studied to determine metal to ligand ratio (M:L). The M to L ratio wa
... Show MorePurpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show More