Today, dimethyl ether (DME) is changing to ordinarily worn as a superb aerosol propellant and refrigerant for its eco-friendly characteristics. Lately, with the development of novel chemical energy in the coal industries, it has become a fascinating field of research as an alternative green fuel for diesel machines due to the high cetane number. The DME synthesis processes include catalytic dehydrating methanol in an adiabatic fixed-bed reactor. In this study, to investigate the chemical conditions of the methanol dehydration reaction, CFD simulations of the adiabatic reactor have been assessed. The advantage of the work is a sensitivity analysis was run to find the effect of pressure, kinetics, and velocity on the reactor performance. The results showed that using a γ-Al2O3 catalyst with selective mechanical properties and unique surface properties is a convenient choice for DME synthesis. The CFD simulation results also show that the laboratory data such as pressure, energy, and velocity in the adiabatic reactor meet the reaction requirements well, and deliberated a major vision of what happened in the reactor. Also, the graphs of the temperature profile with changes in physical properties pomp that methanol dehydration reaction strongly depends on environmental factors and gives different results under the influence of other conditions.
This research aimed to develop a simulation traffic model for an urban street with heterogeneous traffic capable of analyzing different types of vehicles of static and dynamic characteristics based on trajectory analysis that demonstrated psychophysical driver behavior. The base developed model for urban traffic was performed based on the collected field data for the major urban street in Baghdad city. The parameter; CC1 minimum headway (represented the speed-dependent of the safety distance from stop line that the driver desired) justified in the range from (2.86sec) to (2.17 sec) indicated a good match to reflect the actual traffic behavior for urban traffic streets. A good indication of the convergence between simulat
... Show MorePhase-change materials (PCMs) have a remarkable potential for use as efficient energy storage means. However, their poor response rates during energy storage and retrieval modes require the use of heat transfer enhancers to combat these limitations. This research marks the first attempt to explore the potential of dimple-shaped fins for the enhancement of PCM thermal response in a shell-and-tube casing. Fin arrays with different dimensions and diverse distribution patterns were designed and studied to assess the effect of modifying the fin geometric parameters and distribution patterns in various spatial zones of the physical domain. The results indicate that increasing the number of
The present work provides theoretical investigation of laser photoacoustic one dimensional imaging to detect a blood vessel or tumor embedded within normal tissue. The key task in photoacoustic imaging is to have acoustic signal that help to determine the size and location of the target object inside normal tissue. The analytical simulation used a spherical wave model representing target object (blood vessel or tumor) inside normal tissue. A computer program in MATLAB environment has been written to realize this simulation. This model generates time resolved acoustic wave signal that include both expansion and contraction parts of the wave. The photoacoustic signal from the target object is simulated for a range of laser pulse duration 1
... Show MoreWe consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreov
... Show MoreThe aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.
In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.