Preferred Language
Articles
/
ijcpe-1188
CFD Simulation of Methanol Dehydration Step through an Adiabatic Fixed-bed Reactor of DME Synthesis
...Show More Authors

   Today, dimethyl ether (DME) is changing to ordinarily worn as a superb aerosol propellant and refrigerant for its eco-friendly characteristics. Lately, with the development of novel chemical energy in the coal industries, it has become a fascinating field of research as an alternative green fuel for diesel machines due to the high cetane number. The DME synthesis processes include catalytic dehydrating methanol in an adiabatic fixed-bed reactor. In this study, to investigate the chemical conditions of the methanol dehydration reaction, CFD simulations of the adiabatic reactor have been assessed. The advantage of the work is a sensitivity analysis was run to find the effect of pressure, kinetics, and velocity on the reactor performance. The results showed that using a γ-Al2O3 catalyst with selective mechanical properties and unique surface properties is a convenient choice for DME synthesis. The CFD simulation results also show that the laboratory data such as pressure, energy, and velocity in the adiabatic reactor meet the reaction requirements well, and deliberated a major vision of what happened in the reactor. Also, the graphs of the temperature profile with changes in physical properties pomp that methanol dehydration reaction strongly depends on environmental factors and gives different results under the influence of other conditions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of SO2 over Modified Activated Carbon in Fixed Bed Reactor: I, Effect of Metal Oxide Loadings and Acid Treatment
...Show More Authors

 

The removal of SO2 from simulated gas stream (SO2 + air) in a fixed bed reactor using Modified Activated Carbon (MAC) catalysts was investigated. All the experiments were conducted at atmospheric pressure, initial SO2 concentration of 2500 ppm and bed temperature of 90oC. MAC was prepared by loading a series of nickel and copper oxides 1, 3, 5, 7, and 10 w

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
CFD Simulation Model of Salt Wedge Propagation
...Show More Authors

This study aims to numerically simulate the flow of the salt wedge by using computational fluid dynamics, CFD. The accuracy of the numerical simulation model was assessed against published laboratory data. Twelve CFD model runs were conducted under the same laboratory conditions. The results showed that the propagation of the salt wedge is inversely proportional to the applied freshwater discharge and the bed slope of the flume.  The maximum propagation is obtained at the lowest discharge value and the minimum slope of the flume. The comparison between the published laboratory results and numerical simulation shows a good agreement. The range of the relative error varies between 0 and 16% with an average of 2% and a roo

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Kinetics of Fixed Bed Sorption Processes
...Show More Authors

Adsorption and ion exchange are examples of fixed-bed sorption processes that show transient behavior. This means that differential equations are needed to design them. As a result, numerical methods are commonly utilized to solve these equations. The solution frequently used in analytical methods is called the Thomas solution. Thomas gave a complete solution that adds a nonlinear equilibrium relationship that depends on second-order reaction kinetics. A computational approach was devised to solve the Thomas model. The Thomas model's validity was established by conducting three distinct sets of experiments. The first entails the adsorption of acetic acid from the air through the utilization of activated carbon. Following

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Environmental Technology & Innovation
Photo-Fenton-like degradation of direct blue 15 using fixed bed reactor containing bimetallic nanoparticles: Effects and Box–Behnken optimization
...Show More Authors

This study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c

... Show More
View Publication
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Separation And Purification Technology
Application of central composite design approach for optimisation of zinc removal from aqueous solution using a Flow-by fixed bed bioelectrochemical reactor
...Show More Authors

View Publication
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Separation And Purification Technology
Application of central composite design approach for optimisation of zinc removal from aqueous solution using a Flow-by fixed bed bioelectrochemical reactor
...Show More Authors

View Publication
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2011
Journal Name
Al-khwarizmi Engineering Journal
Simulation of Oxygen Mass Transfer in an Internal Loop Airlift Reactor with Axial Dispersion Model
...Show More Authors

The effect of superficial gas velocity within the range 0.01-0.164 m/s on gas holdup (overall, riser and down comer), volumetric oxygen mass transfer coefficient, liquid circulation velocity was studied in an internal loop concentric tubes airlift reactor (working volume 45 liters). It was shown that as the usg increases the gas holdup and also the liquid circulation velocity increase. Also it was found that increasing superficial gas velocity lead to increase the interfacial area that increases the overall oxygen mass transfer coefficient. The hydrodynamic experimental results were modeled with the available equations in the literature. The predicted data gave an acceptable accuracy with the empirical data.

The final

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Catalytic Wet Air Oxidation of Phenol in a Trickle Bed Reactor
...Show More Authors

Catalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copper
oxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solution
pH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,
and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, the
performance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is related
to the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reaction
was strongly

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Hydrogenation of Nitrobenzene in Trickle Bed Reactor over Ni/Sio2 Catalyst
...Show More Authors

Trickle bed reactor was used to study the hydrogenation of nitrobenzene over Ni/SiO2 catalyst. The catalyst was prepared using the Highly Dispersed Catalyst (HDC) technique. Porous silica particles (capped cylinders, 6x5.5 mm) were used as catalyst support. The catalyst was characterized by TPR, BET surface area and pore volume, X-ray diffraction, and Raman Spectra. The trickle bed reactor was packed with catalyst and diluted with fine glass beads in order to decrease the external effects such as mass transfer, heat transfer and wall effect. The catalyst bed dilution was found to double the liquid holdup, which increased the catalyst wetting and hence, the gas-liquid mass transfer rate. The main product of the hydrogenation reaction of n

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Catalytic Wet Air Oxidation of Phenol in a Trickle Bed Reactor
...Show More Authors

Catalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copperoxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solutionpH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, theperformance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is relatedto the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reactionwas strongly affected by WHSV,

... Show More
View Publication
Crossref (1)
Crossref