In the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (HB) correlation provides the most accurate correlation for calculating pressure in FH-1 and FH-3 while the Beggs and Brill original (BBO) correlation proves to be the optimal fit for wells FH-2 and Gomez mechanistic model for FH-4. These correlations show the lowest root mean square (RMS) values of 11.5, 7.56, 8.889, and 6.622 for the four wells, respectively, accompanied by the lowest error ratios of 0.00692%, 0.00033%, 0.00787%, and 0.0011%, respectively. Conversely, Beggs and Brill original (BBO) correlation yields less accurate results in predicting pressure drop for FH-1 compared with other correlations. Similarly, correlations, such as Orkiszewski for FH-2, Duns and Ros for FH-3, and ANSARI for FH-4, also display less accuracy level. Notably, the study also identifies that single-phase flow dominates within the tubing string until a depth of 6000 feet in most wells, beyond which slug flow emerges, introducing significant production challenges. As a result, the study recommends carefully selecting optimal operational conditions encompassing variables such as wellhead pressure, tubing dimensions, and other pertinent parameters. This approach is crucial to prevent the onset of slug flow regime and thus mitigate associated production challenges.
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreSegmentation of urban features is considered a major research challenge in the fields of photogrammetry and remote sensing. However, the dense datasets now readily available through airborne laser scanning (ALS) offer increased potential for 3D object segmentation. Such potential is further augmented by the availability of full-waveform (FWF) ALS data. FWF ALS has demonstrated enhanced performance in segmentation and classification through the additional physical observables which can be provided alongside standard geometric information. However, use of FWF information is not recommended without prior radiometric calibration, taking into account all parameters affecting the backscatter energy. This paper reports the implementation o
... Show MoreAbstract
One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.
In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in
... Show More
An automatic text summarization system mimics how humans summarize by picking the most significant sentences in a source text. However, the complexities of the Arabic language have become challenging to obtain information quickly and effectively. The main disadvantage of the traditional approaches is that they are strictly constrained (especially for the Arabic language) by the accuracy of sentence feature functions, weighting schemes, and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha
... Show MoreContours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.