In the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (HB) correlation provides the most accurate correlation for calculating pressure in FH-1 and FH-3 while the Beggs and Brill original (BBO) correlation proves to be the optimal fit for wells FH-2 and Gomez mechanistic model for FH-4. These correlations show the lowest root mean square (RMS) values of 11.5, 7.56, 8.889, and 6.622 for the four wells, respectively, accompanied by the lowest error ratios of 0.00692%, 0.00033%, 0.00787%, and 0.0011%, respectively. Conversely, Beggs and Brill original (BBO) correlation yields less accurate results in predicting pressure drop for FH-1 compared with other correlations. Similarly, correlations, such as Orkiszewski for FH-2, Duns and Ros for FH-3, and ANSARI for FH-4, also display less accuracy level. Notably, the study also identifies that single-phase flow dominates within the tubing string until a depth of 6000 feet in most wells, beyond which slug flow emerges, introducing significant production challenges. As a result, the study recommends carefully selecting optimal operational conditions encompassing variables such as wellhead pressure, tubing dimensions, and other pertinent parameters. This approach is crucial to prevent the onset of slug flow regime and thus mitigate associated production challenges.
Finite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o
... Show MoreThe goal of this work is demonstrating, through the gradient observation of a of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of ( -system) was developed based on finite time ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo
... Show MoreIn this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).
Background: The use of osseointegrated fixtures in dentistry has been demonstrated both histologically and clinically to be beneficial in providing long term oral rehabilitation in completely edentulous individual. Most patients suffer from denture instability; particularly with mandibular prosthesis, the use of dental implant will be benefit significantly from even a slight increase in retention. The concept of implanting two to four fixtures in a bony ridge to retain a complete denture prosthesis appealing therefore, as retention, stability and acceptable economic compromise to the expanse incurred with the multiple fixture supported fixed prosthesis. Materials and methods in this study the sample were eight patients selected from a hosp
... Show MoreThe ongoing research to improve the clinical outcome of titanium implants has resulted in the implementation of multiple approaches to deliver osteogenic growth factors accelerating and sustaining osseointegration. Here we show the presentation of human bone morphogenetic protein 7 (BMP-7) adsorbed to titanium discs coated with poly(ethyl acrylate) (PEA). We have previously shown that PEA promotes fibronectin organization into nanonetworks exposing integrin- and growth-factor-binding domains, allowing a synergistic interaction at the integrin/growth factor receptor level. Here, titanium discs were coated with PEA and fibronectin and then decorated with ng/mL doses of BMP-7. Human mesenchymal stem cells were used to investigate cellular resp
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreMethods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show More