The aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of copper mass transfer across the membrane. As the applied voltage increased, the rate constant also increased. Additionally, increasing the pH of the solution led to an initial elevate in the rate constant, reaching a maximum value at pH 5, after which it started to decline. Moreover, higher initial copper concentrations had an adverse effect on the rate constant. Notably, the concentration decay profiles observed under different operating conditions followed first-order kinetics, with correlation coefficients exceeding 0.99. The elucidation of this discovery emanated from a remarkable and striking congruence between the experimental data and the mathematical underpinnings of the first-order kinetics model. This serendipitous alignment profoundly reinforced the robustness, veracity, and unwavering reliability of meticulously obtained results, amplifying the credibility and trustworthiness of the present comprehensive study.
Due to the importance of the extraction process in many engineering and medical industries, in addition to great interest in medicinal plants, in this research, microwave-assisted extraction has been applied to extract some active compounds from Rosmarinus officinalis leaves. The optimal extraction conditions were then determined by calculating the ratio and extraction efficiency. The process has also been described through kinetic study by applying five kinetic models, the Hyperbolic diffusion model, Power low model, the First order reaction model, Elovich's model, and Fick's second law diffusion model and determining their compatibility with the studies operation, and determining the kinetic constants for each model. The result
... Show MoreAn electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreThe current study investigated the stability and the extraction efficiency of emulsion liquid membrane (ELM) for Abamectin pesticide removal from aqueous solution. The stability was investigated in terms of droplet emulsion size distribution and emulsion breakage percent. The proposed ELM included a mixture of corn oil and kerosene (1:1) as a diluent, Span 80 (sorbitan monooleate) as a surfactant and hydrochloric acid (HCl) as a stripping agent without utilizing a carrier agent. Parameters such as homogenizer speed, surfactant concentration, emulsification time and internal to organic volume ratio (I/O) were evaluated. Results show that the lower droplet size of 0.9 µm and higher stable emulsion in terms of breakage percent of 1.12 % we
... Show More
Experimental investigation of the influence of inserting the metal foam to the solar chimney to induce natural ventilation are described and analyzed in this work. To carry out the experimental test, two identical solar chimneys (without insertion of metal foam and with insertion of metal foam) are designed and placed facing south with dimensions of length× width× air gap (2 m× 1 m× 0.2 m). Four incline angles are tested (20o,30o,45o,60o) for each chimney in Baghdad climate condition (33.3o latitude, 44.4o longitude) on October, November, December 2018. The solar chimney performance is investigated by experimentally recording absorber pl
... Show MoreEmulsion Liquid Membrane (ELM) is an emerging technology that removes contaminants from water and industrial wastewater. This study investigated the stability and extraction efficiency of ELM for the removal of Chlorpyrifos Pesticide (CP) from wastewater. The stability was studied in terms of emulsion breakage. The proposed ELM included n-hexane as a diluent, span-80 as a surfactant, and hydrochloric acid (HCl) as a stripping agent. Parameters such as mixing speed, aqueous feed solution pH, internal-to-organic membrane volume ratio, and external-to-emulsion volume ratio were investigated. A minimum emulsion breakage of 0.66% coupled with a maximum chlorpyrifos extraction and stripping efficiency were achieved at 96.1% and 95.7% at b
... Show MoreThe current study investigated the stability and the extraction efficiency of emulsion liquid membrane (ELM) for Abamectin pesticide removal from aqueous solution. The stability was investigated in terms of droplet emulsion size distribution and emulsion breakage percent. The proposed ELM included a mixture of corn oil and kerosene (1:1) as a diluent, Span 80 (sorbitan monooleate) as a surfactant and hydrochloric acid (HCl) as a stripping agent without utilizing a carrier agent. Parameters such as homogenizer speed, surfactant concentration, emulsification time and internal to organic volume ratio (I/O) were evaluated. Results show that the lower droplet size of 0.9 µm and higher stable emulsion in terms of breakage percent of 1.12 % were
... Show More