Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the practical application of bio-based Zinc Oxide nanoparticles (ZnO NPs) prepared chemically from celery leaf plant extract as green additive in water-based mud drilling fluid (WBM). The study aimed to evaluate the filtration and thermal stability of WBM using green-synthesized ZnO NPs. The results showed that the ZnO NPs have minimal effect of mud density, but significant improvement in mud thermal stability and filtration properties were attained with concentrations lower than 1g. The fluid loss rate was reduced by 33% with 0.45g of ZnO nanoparticles, and the thinnest mud cake was obtained as well. In terms of thermal stability, the bio-based ZnO NPs greatly enhanced the rheological properties of WBM at elevated temperatures. The rate of increment in plastic viscosity (PV) or decrement in yield point (YP) and gel strength occurred in a controllable manner compared to the rheological properties of base mud at high temperatures reaching 90°C. This study provides insight into the effect of green-synthesized ZnO nanoparticles on the performance of water-based mud and highlights their potential as an effective and environmentally friendly additive for the oil and gas industry.
Nanostructure of chromium oxide (Cr2O3-NPs) with rhombohedral structure were successfully prepared by spray pyrolysis technique using Aqueous solution of Chromium (III) chloride CrCl3 as solution. The films were deposited on glass substrates heated to 450°C using X-ray diffraction (XRD) shows the nature of polycrystalline samples. The calculated lattice constant value for the grown Cr2O3 nanostructures is a = b = 4.959 Å & c = 13.594 Å and the average crystallize size (46.3-55.6) nm calculated from diffraction peaks, Spectral analysis revealed FTIR peak characteristic vibrations of Cr-O Extended and Two sharp peaks present at 630 and 578 cm-1 attributed to Cr-O “stretching
... Show MoreMetal oxide nanoparticles, including iron oxide, are highly considered as one of the most important species of nanomaterials in a varied range of applications due to their optical, magnetic, and electrical properties. Iron oxides are common compounds, extensive in nature, and easily synthesized in the laboratory. In this paper, iron oxide nanoparticles were prepared by co-precipitation of (Fe+2) and (Fe+3) ions, using iron (II and III) sulfate as precursor material and NH4OH solution as solvent at 90°C. After the synthesis of iron oxide particles, it was characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These tests confirmed the obtaining o
... Show MoreZinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
The silver nanoparticles synthesized have to be handled by humans and must be available at cheaper rates for their effective utilization; thus, there is a need for an environmentally and economically feasible way to synthesize these nanoparticles. Therefore, this study aimed to synthesis of silver nanoparticles using phenolic compounds extracted from Rosmarinus officinalis. The maceration method and Soxhlet apparatus were used to prepare aqueous and methanolic Rosmarinus officinalis leaves extracts respectively, Furthermore, Rosmarinus officinalis silver nanoparticles (RAgNPs) were prepared from the aqueous and methanolic leaves extract of this plant and diagnosed using the ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM),
... Show MoreExperimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
Environmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreStaphylococcus lugdunensis, isolation between 12.5 to 1.8% routine works may be a possible peroral route of infective endocarditis and found in the oral cavity by examined using saliva. Similar supragingival plaque isolation was observed. The increased bacteria resistance to antibiotics multiple have led to novel methods for resistance bacteria; antimicrobial agents are well known (ZnO NPs) by biological method and are lower toxicity and biology safety ZnNOPs activity by plant extraction and less toxicity as well as bio-safe. The nanoparticle was synthesized by biological method (Green) by barberry (Berberis vulgaris) extract. In this study using (WAD) method using different concentrations between (128, 64, 32, and 16) mg/mL of ZnO
... Show Moreتم في هذه الدراسة ، تزيين رقائق أكسيد الجرافين (GO) بجسيمات كوبلتيت النيكل النانوية NiCo2O4(NC) عن طريق الترسيب في الموقع ، وتم استخدام المتراكب المحضر (NC: GO) كسطح ماز لإزالة صبغة الميثيل الخضراء ( MG) من المحاليل المائية. تم التحقق من التغطية الناجحة لأوكسيد الجرافين بجزيئات كوبلتيت النيكل النانوية (NC) باستخدام دراسات FT-IR وحيود الأشعة السينية (XRD). كانت أحجام الجسيم
... Show More