The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various deposited oxide was characterized by energy dispersive X-ray spectroscopy (EDX). The study also highlighted the effect of current density (40, 60, and 80 mA/cm2), pH (3, 4, and 5), and the concentration of NaCl (1, 1.5, and 2 g/l) on the anodic electro-oxidation of phenol was investigated. The results revealed that the composite anodes are successfully prepared galvanostatically by anodic and cathodic deposition. In addition, the current density of 25 mA/cm2 gave the best cathodic deposition performance. The removal efficiency of phenol and other by-products increased as the current density and the concentration of NaCl in the electrolyte increased, while it decreased as the pH increased. The prepared composite electrode gave high COD removal efficiency (98.769 %) at the current density of 80 mA/cm2, pH= 3, NaCl conc. of 2 g/L within 3 h.
The purified prepared compounds were identified through different methods of identification i.e, I.R, UV-vi^ble-spectroscopy in addition to (coloured tests) Calculation of the sum of OH groups. TLC techniques were also used to test the purity and the speed ofthe rate of flow (RF).
Rates of zinc consumption during cathodic protection of a copper pipeline carrying saline water were measured by the loss in weight technique. The study of sacrificial anode cathodic protection of short copper tube using zinc strip extended axially in the pipe revealed that : (i) The increase of zinc consumption with time of exposure (1-3 h's) at different flow rates (turbulent flow) (300-600 l/hr) while the temperature , solution concentration and the pH were fixed at 20ºC, 3.5%wt NaCl, and pH=8 respectively in absence and presence of bacteria.(ii)Increase of zinc consumption with flow rates (300-600 l/hr) at different temperatures (10-40ºC) while solution concentration and time of exposure were fixed at 3.5 %wt NaCl and 3hr's respective
... Show MoreRates of zinc consumption during cathodic protection of a copper pipeline carrying saline water were measured by the loss in weight technique. The study of sacrificial anode cathodic protection of short copper tube using zinc strip extended axially in the pipe revealed that : (i) The increase of zinc consumption with time of exposure (1-3 h's) at different flow rates (turbulent flow) (300-600 l/hr) while the temperature , solution concentration and the pH were fixed at 20ºC, 3.5%wt NaCl, and pH=8 respectively in absence and presence of bacteria.(ii)Increase of zinc consumption with flow rates (300-600 l/hr) at different temperatures (10-40ºC) while solution concentration and time of exposure were fixed at 3.5 %wt NaCl and 3hr's respect
... Show MoreThis study is attempt to improve thermal isolation through measuring thermal conductivity composite of on polyester resin with fillers of (TiO2, ZnO, Acrylonitril, wood flour Coconut (Wf). The grain size of the fillers is 200 µm. The number of samples is (16) in addition to the virgin sample; these samples are prepared by cast molding method for polyester with filler volume fractions (5%, 10%, 15% and 20%). Shore hardness tests were used to measure the hardness and Lee disk method for thermal conductivity. The experimental results showed that the (20% ZnO) sample has the maximum value of thermal conductivity where (20% w.f) has minimum thermal conductivity .on the other hand (15% ZnO) sample give the maximum value of hardness where (20% w
... Show MoreIn this research, the preparation of a chemically activated carbon from date stones by using electric and microwave assisted K2CO3 activation was studied. The effect of radiation power, radiation time, and impregnation ratio on the yield and Iodine number on the activated carbons was investigated. The activated carbon characterizations were examined by its surface area, pore structure analysis, bulk density, moisture content, ash content, iodine number, FTIR, and scanning electron microscopy (SEM). The adsorption capacity was also studied by adsorption of fluoroquinolones antibiotics, CIP, NOR, and LEVO, by the prepared activated carbon.
... Show MoreThe Maxwell equations have been formulated for a composite slab waveguide at x-band wave propagation. The eigenvalues of the system equations are obtained by using MATLAB program. These eigenvalues are used to obtain the wave propagation constant and a number of modes inside the slabs. A good correspondence was seen between the number of modes and the cut off thickness. The parameter that affects the performance of waveguide is the slab thickness. The propagation constant is usually adopted to characterize this type of waveguide and show how the cutoff frequency of the mode in the slab is increased dramatically by decreasing the frequency.
Our study focused on lower modes, the results for the transmission coefficient are then used to
A spectrophotometric method is proposed for the determination of some drugs containing amino group such as mesalazine, metoclopramide and dopamine in pharmaceutical formulations. It was simple, precise, accurate, rapid, and based on the oxidation of each drug with chromate as an oxidizing agent in the presence of 1N hydrochloric acid. Then indigo carmine is reacted with residual chromate in the presence of a catalysis factor (sodium oxalate). Increasing in absorbance's value of the color system is proportional to the amount of the three drugs which is measured at the selected wavelength of 610 nm.
The proposed method is obeying Beer's law in the ranges of (1-40, 2-44 and 2-52) ppm for the concentration of
... Show MoreThe presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreAn experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).
It has been found that the best bath temperature
... Show MoreThe performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence
... Show More