In the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amounts of Nano Alumina (0.5%, 1%, and 1.5% by weight of cement (BWOC)) were selected with synthetic fiber (0.5 g, 1 g, and 1.5 g, respectively). The results show a significant improvement in compressive strength, with all values meeting the API requirements, and a decrease in the thickening time of Iraqi oil well cement, depending on the proportions of additives. The most significant improvement in compressive strength was achieved in the sample containing 1.5% Nano Alumina by weight of cement (BWOC) and 1.5 g Synthetic Fiber (Barolift), where the compressive strength increased by 40.7% and 33.8% at a temperature of 38 °C and 60 °C, respectively, while the thickening time decreased by 26.53% at this ratio of additives. The results demonstrate the feasibility of using these additives to enhance the performance of Iraqi oil well cement, expanding its potential application in Iraqi oil fields.
The adsorption study of thymol, was carried out at (25±0.1) °C, using granulated surfactant modified Iraqi Na – montmorillonite clay (initiated modified bentonite); in a down-flow packed column, the modified mineral was characterized by FT-IR spectroscopy. A linear calibration graph for thymol was obtained, which obey Beer's law in the concentration range of 5-50 mg/L at 274 nm against reagent blank. Single-factor-at-a-time approach; showed that the equilibrium time required for complete adsorption was 45 minute with flow rate (4.0drop/ mint). The adsorption of thymol increased with rising pH of the adsorbate solution, increase of solute uptake when the initial adsor
... Show MoreThe present study was designed to investigate the possibility of exploiting the interspecies interaction of microbial cells in order to enhance the production of prodigiosin by local isolate S. marcescens S23. Prodigiosin is a promising drug owing to its characteristics of antibacterial, antifungal, immunosuppressive and anticancer activities. S. marcescens S23 was isolated from soil sample and already recognized via morphological, biochemical and molecular identification process. The first step was to detect the optimal conditions for maximum prodigiosin production using chemically defined liquid medium. The results revealed that the optimal conditions for prodigiosin production were sucrose as carbon source; peptone as nitrogen source;
... Show MoreIndustrial dyes are major pollutants in wastewater and river water with an initial visible concentration of 1 mg/L. Recent studies have shown the possibility of using polyphenol oxidase in catalytic biological treatment due to its ability to oxidize a large number of dyes and pollutants in wastewater and the flexibility to work in wide ranges of temperature, pH and salinity. It is easy availability as well as the low economic cost resulting from its use in biological treatments, this enzyme polyphenol oxidase was used. The findings in this study showed that the extraction of polyphenol oxidase (PPO) from potato peel was homogenized with potassium phosphate buffer (0.1 M, pH 7) at a ratio of 1:10 (weight: volume) for two min. The res
... Show MoreA novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show MoreAbstractBACKGROUND: Some cases of vitiligo require melanocyte transplantation, but these surgical techniques have varying degrees of success. OBJECTIVES: To perform melanocytes transplantion in patients with vitiligo using a new needling micrografting technique. PATIENTS and METHODS: This interventional case study took place at the Department of Dermatology and Venereology at Baghdad Teaching Hospital from December 2010 to September 2011. Twelve patients with vitiligo were included. A split-thickness skin graft was taken from the normal area and cut into micropieces ranging from 0.1 mm to 0.3 mm in diameter. The recipient area was anesthetized, and the micrografts were then implanted into the dermis using the needling technique. The number
... Show MoreThe paper discusses the structural and optical properties of In 2 O 3 and In 2 O 3-SnO 2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In 2 O 3 where increased after loading SnO 2 , this addition is a challenge in gas sensing application. Sensitivity of In 2 O 3 thin film against NO 2 toxic gas is 35% at 300 o C. Sensing properties were improved after adding Tin Oxi
... Show MoreIn today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har
... Show More