Silica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review, the major applications of the Mobil Mesoporous Molecular Sieves family, such as catalysts, adsorbents, and drug delivery agents, have been surveyed. Furthermore, the synthesis of the Mesoporous Molecular Sieves materials, the silica sources, the importance of templates, and the mechanisms of the synthesis are discussed herein. Members of this material family are characterized by many physicochemical properties that are closely related to their high silica content, crystalline structure, and pore arrangement. Commonly, the members of this family have large surface areas, high pore volumes, small pore sizes, and narrow and uniform particle size distributions. These properties enable numerous industrial applications and opportunities for scientific studies to further develop existing materials or manufacture new ones.
Inhalation of Staphylococcal Enterotoxin B (SEB) is known to induce acute lung injury (ALI) and studies from our laboratory have shown that THC, a psychoactive ingredient found in Cannabis sativa, can attenuate the ALI. In the current study, we investigated the role played by lung microbiota in ALI with or without THC treatment. A dual-dose of SEB was given to C3H/HeJ mice, which were then treated either with vehicle or THC. SEB-administration caused ALI and 100% mortality while all THC-treated mice survived and suppressed the inflammation in the lungs. Furthermore, lung microbiota was collected and 16S rRNA sequencing was performed. The data were analyzed to determine the alpha and b
Objective(s): The aims of present study to findout the effect of aeromedical evacuation program on flight medics’ knowledge.
Methods: A pre-experimental design is carried in army aviation bases in Iraq, for the period of April 1st 2019 to October 25th 2019. Non-probability "purposive" sample of (30) flight medics are selected from army aviation bases. The questionnaire consisted of two main parts: the demographic characteristics of air paramedics, and the second part included five axes, which are (50) paragraphs related to the knowledge of air paramedics towards emergency injuries. The researcher used the statistical program version 20 to analyze the data, and the stability of the questionnaire was measured through the pre and post
A total of 30 specimens of house sparrow Passer domesticus biblicus Hartert, 1904 (15 females and 15 males) were collected from gardens of some houses in Baghdad city; all birds were dissected to identify the parasites in vesicle, gizzard, intestine, gall bladder and caecum. One species of trematodes Brachydistomum microscelis (Yamaguti, 1933) was found in the gall bladder and two species of cestodes Anonchotaenia globata (von Linstow, 1879) and Raillietina tetragona (Molin, 1858) were found in the small intestine of house sparrow. Morphologic and morphometric measurements were considered.
The genus Brachydistomum Travassos, 1944 is being recorded for the first time in Iraq in the gall bladder of house sparr
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreThis study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show MoreIn the present study, a total of 272 freshwater fishes belonging to three species namely: Cyprinus carpio, Barbus xanthopterus and Aspius vorax, were collected from Euphrates river at Al-Haklania distrct, Al-Anbar province during the period from August 2008 till the end of July 2009, by using gill nets and cast nets. Fishes were survyed for intestinal parasitic worms. The investigation revealed the infectation of these fishes with four parasitic species: the digenetic trematode Aspidogaster limacoides from the intestine of C. carpio, B. xanthopterus and A. vorax, larval nematode Contracaecum spp. from the body cavity of C. carpio and the external surface of intestine of B
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreThis study presents a detailed morphology and taxonomic study of Polysiphonia subtilissima collected from Abdul Rehman Goth, Karachi coast, Pakistan. Polysiphonia is a filamentous heterotrichous red algae, characterized by its branching structures and attachment mechanisms. P. subtilissima is notable for its broad salinity tolerance and wide distribution across marine and freshwater ecosystems. This research provides an in-depth examination of the internal and external structures of P. subtilissima, contributing to its systematic study and documenting its first recorded occurrence in Pakistani coastal areas, bordering the northern Arabian Sea. The findings enhance the understanding of the species taxonomy and its ecological role in
... Show More