The downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ rates to surface conditions. Different types of Inflow Performance Relationship (IPR) equations can be used for SIP interpretation, including the Straight-line method, Fetkovitch method, and Laminar Internal Turbulent (LIT) relations. Although the SIP method can be used for single-phase flow, the interpreter can restrict the IPR’s calculations to a particular phase. This research discusses the difficulties in estimating the average reservoir pressure in multilayered reservoir completed wells over their production life. The SIP technique has been applied to some producing wells in the south of Iraq, which are completed in multiple producing reservoirs previously tested with a formation tester to estimate reservoir pressure and other parameters. Two wells are taken in the south of Iraq region, Zubair Oil Field, one with cross flow between perforations and the other well with no cross flow. An average pressure is not calculated for layer A in Well-1, because there is no contribution rate. While the average pressure for Well-1, layer B is 3414.49 psia. Also, the average pressure for Well-2, layer H is not calculated because there is no rate contribution from this layer, and the maximum average pressure was calculated in layer G, which is about 2606.26 psia. It is also found that the presence of cross flow has no effect on SIP calculations.
Intelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we
... Show MoreThe petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir
... Show More
In this work, calculation of pressure losses in circulating system for two drilling muds is evaluated in Noor oil field. Two types of drilling muds that were used for drilling section 12 1/4" and 8 3/4" which are Salt saturated mud and Ferro Chrome Lignosulfonate-Chrome Lignite mud. These calculations are based on field data that were gathered from the drilling site of well Noor-15, which are included, rheological data, flow data and specification of drill string. Based on the obtained results, the best rheological model that fit their data is the Herschel-Bulkley model according to correlation coefficient value for their two drilling mud. Also, the difference between the calculated pressure lo
... Show MoreThe main objective of this study is to experimentally investigate the effect of the CMC polymeric drag reducer on the pressure drop occurred along the annulus of the wellbore in drilling operation and investigate the optimum polymer concentration that give the minimum pressure drop. A flow loop was designed for this purpose consist from 14 m long with transparent test section and differential pressure transmitter that allows to sense and measure the pressure losses along the test section. The results from the experimental work show that increasing in polymer concentration help to reduce the pressure drop in annulus and the optimum polymer concentration with the maximum drag reducing is 0.8 kg/m3. Also increasing in flow rate a
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
There are varieties of reasons lead for drilling horizontal wells rather than verticals. Increasing the recovery of oil, especially from thin or tight reservoir permeability is the most important parameter. East Baghdad oil field considered as a giant field with approximately more than 1billion barrel of a proved reserves accompanying recently to low production rate problems in many of the existing wells. It is important to say that presence of of horizontal wells in East Baghdad field especially by converting some of already drilled wells by re-entry drilling horizontal sections may provide one of best solutions for the primary development stage in East Baghdad field which may be followed by drilling new horizont
... Show MoreThere are varieties of reasons lead for drilling horizontal wells rather than verticals. Increasing the recovery of oil, especially from thin or tight reservoir permeability is the most important parameter.
East Baghdad oil field considered as a giant field with approximately more than 1billion barrel of a proved reserves accompanying recently to low production rate problems in many of the existing wells.
It is important to say that presence of of horizontal wells in East Baghdad field especially by converting some of already drilled wells by re-entry drilling horizontal sections may provide one of best solutions for the primary development stage in East Baghdad field which may be followed by drilling n
... Show MoreThis paper discusses the method for determining the permeability values of Tertiary Reservoir in Ajeel field (Jeribe, dhiban, Euphrates) units and this study is very important to determine the permeability values that it is needed to detect the economic value of oil in Tertiary Formation. This study based on core data from nine wells and log data from twelve wells. The wells are AJ-1, AJ-4, AJ-6, AJ-7, AJ-10, AJ-12, AJ-13, AJ-14, AJ-15, AJ-22, AJ-25, and AJ-54, but we have chosen three wells (AJ4, AJ6, and AJ10) to study in this paper. Three methods are used for this work and this study indicates that one of the best way of obtaining permeability is the Neural network method because the values of permeability obtained be
... Show MoreThe Mauddud reservoir, Khabaz oil field which is considered one of the main carbonate reservoirs in the north of Iraq. Recognizing carbonate reservoirs represents challenges to engineers because reservoirs almost tend to be tight and overall heterogeneous. The current study concerns with geological modeling of the reservoir is an oil-bearing with the original gas cap. The geological model is establishing for the reservoir by identifying the facies and evaluating the petrophysical properties of this complex reservoir, and calculate the amount of hydrocarbon. When completed the processing of data by IP interactive petrophysics software, and the permeability of a reservoir was calculated using the concept of hydraulic units then, there
... Show More