In southern Iraq, the Yamama Formation has been a primary carbonate resource since the Lower Cretaceous era. This study covers Siba Field, which is located in southeastern Iraq. This paper will be devoted to a YC unit of study. The most crucial step in reservoir management is petrophysical characterization. The primary goal of this research is to assess the reservoir features and lithology of the Yamama (YC) Formation in the Siba region. Accessible excellent logs include sonic, density, neutron, gamma-ray, SP, and resistivity readings. The Interactive Petrophysics (IP4.4) program examined and estimated petrophysical features such as clay volume, porosity, and water saturation. The optimum approach was the neutron density and clay volume calculation using the Gamma Ray Method (VclGR), it was 0.246 in SB-6 since they are not impacted by anything. The Archie method was chosen due to its suitability for limestone. The lithology and mineralogy of the formations were determined using M-N cross plots; the diagram revealed that the Formation was composed of limestone. The Archie parameter was determined using the Pickett plot and formation water resistivity from the Pickett plot and SP log where the results were similar in all wells (RW=0.016, m=2.08, n=2.3, a=1.1). In addition, the higher section of the formation has good reservoir qualities such as density is (2.368g/cc), porosity is (PHIE=0.117) in SB-6.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
In the recent years, the work in composite industry needed new ecofriendly resources to improve the original properties of current materials. Many researches attempted to find alternative additives to be used with the current systems which provide a new material that is environmentally friendly and has better performance than the synthetic counterparts. This paper presents the study of mechanical characteristics, including bending, impact, tensile and hardness tests, of date palm fiber (DPF)/ epoxy composite. The composite plate was constructed by hand-layup technique. The filler content values (wt %) were 5%, 10%, 15% and 20%. Young's modulus, impact strength and hardness were shown to be increased with increasing fiber content. Tensile
... Show MoreThis research includes a study of dezincification by corrosion from brass alloys in three types of media, which are acidic solution, basic and slat solution in different percentages. The study show the higher dezincification occurs in basic solution which decrease the fatigue properties where the fatigue properties are inversely proportional with dezincification.
In this study, the effect of the annealing temperature on the material properties and the structural properties of cuprous oxide was studied in order to investigate how the annealing temperature affects the material properties, and the temperature varied between 200℃, 300℃, 400℃ and 500 ℃ and was unannealed. The physical properties of the cuprous oxide were measured by X-ray diffraction (XRD). The XRD patterns showed that the Cu2O nanoparticles were highly pure, crystalline, and nano-sized. From the XRD results, we found the pure cuprite (Cu2O) phase. The values of crystal size were discovered and calculated by the Halder-Wagner and Size-Strain Plot (SSP) methods, respectively. The crystallite size increased
... Show MoreIn this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.
In this research, the effect of electrode material on the parameters of the produced DBD plasma was investigated. First, a non-thermal plasma was created by applying a 15 kV AC voltage between two electrodes and using a glass plate as a dielectric barrier in the design Dielectric Barrier Discharge (DBD) plasma system. The obtained plasma spectrum was analyzed using optical emission spectroscopy to calculate plasma parameters by the Boltzmann plot method. Electrodes made of copper, aluminium, and stainless steel were employed in this research. Electron temperature ( ) for copper, aluminium, and stainless steel was found to be (1.398 eV), (1.093 eV) and (1.009 eV), respectively.
Gypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi
... Show MoreThe present study aimed to use the magnetic field and nanotechnology in the field of water purification, which slots offering high efficiency to the possibility of removing biological contaminants such as viruses and bacteria rather than the use of chemical and physical transactions such as chlorine and bromine, and ultraviolet light and boiling and sedimentation and distillation, ozone and others that have a direct negative impact on human safety and the environment. Where they were investigating the presence in water samples under study Coli phages using Single agar layer method and then treated samples positive for phages to three types of magnetic field fixed as follows (North Pole - South Pole - Bipolar) and compare the re
... Show More