This study successfully synthesized high-performance photodetectors based on Ag-WO3 core–shell heterostructures using a simple and economical two-step pulsed laser ablation in water method and has investigated the electrical characteristics of the Ag@WO3 nanocomposite heterojunction. The Hall effect tests indicate that the synthesized Ag@WO3 exhibits n-type conduction with a Hall mobility of 1.25 × 103 cm2V-1S-1. Dark current–voltage properties indicated that the created heterojunctions displayed rectification capabilities, with the highest rectification factor of around 1.71 seen at a 5 V bias. A photodetector’s responsivity reveals the existence of two response peaks, which are situated in the ultraviolet and visible region. The photodetector demonstrates a rapid response time of less than 100 ms. The detectivity values for wavelengths of 350 nm and 490 nm were 35 × 1013 Jones and 28 × 1013 Jones, respectively. The n-Ag-WO3/n-Si photodetector achieved a maximum EQE of 11.5% in the ultraviolet wavelength when subjected to 3 V and illuminated with 350 nm (26 mW/cm2) light. The devices demonstrate rapid switching behavior with a rise time of 0.32 s and a fall time of 0.33 s. The time-dependent light response of a photodetector under illumination at 26 mW/cm2 is seen at a bias of 3 V. The light exhibits a rise and decay duration of 15 s, while the photocurrent gain is measured at 9µA. The photocurrent of devices exhibited a positive correlation with the incoming light intensity, suggesting that the junction has the potential to function as a photo detector. © The Author(s) 2024.
Gas sensors based on titanium dioxide (TiO2) and zinc oxide (ZnO) nanocomposites are considered energy-saving devices that are utilized to find dangerous or harmful gases in an environment. The performance of nitrogen dioxide (NO2) gas sensors have been improved by spin-coating a TiO2 and TiO2:ZnO nanocomposite with varying concentrations (90TiO2:10ZnO, 70TiO2:30ZnO, and 50TiO2:50ZnO). To correlate structural properties with gas-sensing behavior, structural and morphological characterization has been done using FESEM, XRD, and EDX. Without any ZnO-specific crystalline phase, TiO2
... Show MoreIn the present paper, chitosan Schiff base has been synthesized from chitosan’s reaction with the salicyldehyde. The AuNPs was manufacture by extract of onion peels as a reducing agent. The Au NPs that have been prepared were characterized through the UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan Schiff base / PVP has been prepared through using the approach of solution casting. Chitosan Schiff base / PVP Au nano-composites was prepared. Nano composites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1651cm-1 as a result of the (C=N) imine group. SEM, DSC and TGA confirms the thermal stability of
... Show MoreA theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account both plasma dynamics and time variation of incident laser pulse (i.e. pulse shape or profile).Shock tube relations were employed in formulating plasma dynamics over target surface. Gaussian function was chosen in formulating the pulse profile in the present modeling
This study focused on the bactericidal potency of toluidine blue” TBO”photosensitizer and red laser radiation of 635nmwith different doses against multi-drug resistant streptococcus pyogenes (S. pyogenes) isolated from infected burns wounds to see if it is susceptible to photodynamic inactivation .
Atotal of 45 isolates were collected from 38” patients” with infected burnwounds samples were collected from September to December 2019.Burns wounds swabs were employed using standard procedures of swab collection. Among these, eleven isolates were multidrug resistant”S.pyogenes”. More resistant isolates that has been proved to all antibiotics used. This multidrug resistant isolate used in
... Show MoreThe present work includes a design and characteristics study of a controlling the wavelength of high power diode laser by thermoelectric cooler [TEC] . The work includes the operation of the [TEC] to control the temperature of the diode laser between ( 0- +30) °C by changing the resistance of thermistor. We can control a limited temperature of a diode laser by changing the phase cooling between hot and cold faces of the diode, this process can be attempted by comparator type [LM –311] .The theoretical results give a model for controlling the temperature with, the suitable wavelength.
Background: Hemorrhoids are one of the most
common surgical conditions .Conventional
haemorrhoidectomy was the traditional operation for
the treatment of hemorrhoids. Other modalities of
treatment had been used as an alternative operations
including CO2 laser haemorrhoidectomy.
Objectives: To determine the outcome of treatment
of hemorrhoids by using CO2 laser
haemorrhoidectomy and its advantages over
conventional surgery
Methods: This is a retrospective comparative
interventional study of 1024 case of third degree
haemorhoids selected out of 1300 case of
hemorrhoids of different degrees, admitted to
ALKINDY, ALYERMOUK teaching hospitals and
ABD ALMAGEED private hospital, from May 1998
to J
Abstract: The use of indirect, all-ceramic restorations has grown in popularity among dentists. Studies have demonstrated that for indirect ceramic restorations to be effective over time, cement and ceramic must be bonded in a stable manner. Chemical, mechanical, and laser irradiation are among the methods used to precondition ceramic surfaces in order to increase bond strength.The objective of the study: This study was performed to investigate the roughness values and surface topography of lithium disilicate glass-ceramic treated with conventional methods and different Er,Cr:YSGG, and fractional CO2 laser conditioning parameters.Material and methods:<
... Show MoreIn this article Silver nanoparticles have been synthesized through physical method where the Nd-YAG laser has been used.The antimicrobial activities of these silver nanoparticles were investigated on two types of bacteria Escherichia coli and Staphylococcus aureus. These bacteria were used as representatives of Gram-negative and Gram-positive bacteria, respectively. Two experiments have been made The first one was to test the effectiveness of silver nanoparticles as an antimicrobial agent on Gram negative bacteria Escherichia coli and Gram positive bacteria Staphylococcus aureus, while the other one (susceptibility Test) was to evaluate antimicrobial agents effective against bacteria resistant to multiple antibiotics. This study showed t
... Show MoreAbstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques. It allows direct detection of many biological and chemical materials. Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms. One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:
... Show MoreThe current challenge facing our age is the information digitization, at the same time, there is a huge development in the interdisciplinary of technologies with sciences. In the last few years, the World witnessed a number of information challenges with different dimensions, including digital dimensions, which are called the digital world and the virtual world for authors and movie writers. Consequently, the digital art concept emerged that utilizes the computer in an efficient way and as a new technique for drawing. This art is considered a great leap for modern art. The influence of digital technology transformed traditional arts like painting and sculpture into new forms, from pure arts to virtual reality. The most important characte
... Show More