This study successfully synthesized high-performance photodetectors based on Ag-WO3 core–shell heterostructures using a simple and economical two-step pulsed laser ablation in water method and has investigated the electrical characteristics of the Ag@WO3 nanocomposite heterojunction. The Hall effect tests indicate that the synthesized Ag@WO3 exhibits n-type conduction with a Hall mobility of 1.25 × 103 cm2V-1S-1. Dark current–voltage properties indicated that the created heterojunctions displayed rectification capabilities, with the highest rectification factor of around 1.71 seen at a 5 V bias. A photodetector’s responsivity reveals the existence of two response peaks, which are situated in the ultraviolet and visible region. The photodetector demonstrates a rapid response time of less than 100 ms. The detectivity values for wavelengths of 350 nm and 490 nm were 35 × 1013 Jones and 28 × 1013 Jones, respectively. The n-Ag-WO3/n-Si photodetector achieved a maximum EQE of 11.5% in the ultraviolet wavelength when subjected to 3 V and illuminated with 350 nm (26 mW/cm2) light. The devices demonstrate rapid switching behavior with a rise time of 0.32 s and a fall time of 0.33 s. The time-dependent light response of a photodetector under illumination at 26 mW/cm2 is seen at a bias of 3 V. The light exhibits a rise and decay duration of 15 s, while the photocurrent gain is measured at 9µA. The photocurrent of devices exhibited a positive correlation with the incoming light intensity, suggesting that the junction has the potential to function as a photo detector. © The Author(s) 2024.
The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
Quadrupole Q moments and effective charges are calculated for 9C, 11C, 17C and 19C exotic nuclei using shell model calculations. Excitations out of major shell space are taken into account through a microscopic theory which are called core-polarization effects. The simple harmonic oscillator potential is used to generate the single particle matrix elements of 9,11,17,19C. The present calculations with core-polarization effects reproduced the experimental and theoretical data very well.
Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreIn this work, the nuclear electromagnetic moments for the ground and low-lying excited states for sd shell nuclei have been calculated, resulting in a revised database with 56 magnetic dipole moments and 41 electric quadrupole moments. The shell model calculations are performed for each sd isotope chain, considering the sensitivity of changing the sd two-body effective interactions USDA, USDE, CWH and HBMUSD in the calculation of the one-body transition density matrix elements. The calculations incorporate the single-particle wave functions of the Skyrme interaction to generate a one-body potential in Hartree–Fock theory to calculate the single-particle matrix elements. For most sd shell nuclei, the experimental data are well rep
... Show MoreThis prospective study investigates the prevalence of methicillin-resistant S.aureus (MRSA)
in burn unit of Al-Kindy Iraqi hospital, their susceptibility to antibiotics and bactericidal effect of near
infrared light from high powered 1064nm Nd: YAG laser and green light 532nm from SHG Nd: YAG laser
using various energy densities on these bacteria. Twenty four clinical isolates of S.aureus out of sixty
four examined patients with sever burn ulcers.MRSA was associated with 50% of S.aureus infections
.Results of antimicrobial susceptibility revealed that MRSA were multidrug resistant. After laser treatment
of non MRSA with Nd:YAG with wavelength of 1.064nm, 4mm beam diameter, energy density of
0.636 kh/cm2 and 180sec ex