The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
Significant advances in horizontal well drilling technology have been made in recent years. The conventional productivity equations for single phase flowing at steady state conditions have been used and solved using Microsoft Excel for various reservoir properties and different horizontal well lengths.
The deviation between the actual field data, and that obtained by the software based on conventional equations have been adjusted to introduce some parameters inserted in the conventional equation.
The new formula for calculating flow efficiency was derived and applied with the best proposed values of coefficients ψ=0.7 and ω= 1.4. The simulated results fitted the field data.
Various reservoir and field parameters including late
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
In this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.