In this research, an unknown space-dependent force function in the wave equation is studied. This is a natural continuation of [1] and chapter 2 of [2] and [3], where the finite difference method (FDM)/boundary element method (BEM), with the separation of variables method, were considered. Additional data are given by the one end displacement measurement. Moreover, it is a continuation of [3], with exchanging the boundary condition, where are extra data, by the initial condition. This is an ill-posed inverse force problem for linear hyperbolic equation. Therefore, in order to stabilize the solution, a zeroth-order Tikhonov regularization method is provided. To assess the accuracy, the minimum error between
... Show MoreIn this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:
which is defined in the open unit disk satisfying the following condition
This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.
This research aims to present some results for conceptions of quasi -hyponormal operator defined on Hilbert space . Signified by the -operator, together with some significant characteristics of this operator and various theorems pertaining to this operator are discussed, as well as, we discussed the null space and range of these kinds of operators.
Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show MoreIn this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
In this paper, the time-fractional Fisher’s equation (TFFE) is considered to exam the analytical solution using the Laplace q-Homotopy analysis method (Lq-HAM)â€. The Lq-HAM is a combined form of q-homotopy analysis method (q-HAM) and Laplace transform. The aim of utilizing the Laplace transform is to outdo the shortage that is mainly caused by unfulfilled conditions in the other analytical methods. The results show that the analytical solution converges very rapidly to the exact solution.
In this paper we have studied a generalization of a class of ( w-valent ) functions with two fixed points involving hypergeometric function with generalization integral operator . We obtain some results like, coefficient estimates and some theorems of this class.
The operator ψ has been introduced as an associated set-valued set function. Although it has importance for the study of minimal open sets as well as minimal I-open sets. As a result of this study, we introduce minimal I^*-open sets . In this study, several characterizations of minimal I^*-open sets are also investigated. This study also discusses the role of minimal I^*-open sets in the *-locally finite spaces. In an aspect of topological invariant, the homeomorphic images of minimal I^*-open set has been discussed here.
In this paper, the Reliability Analysis with utilizing a Monte Carlo simulation (MCS) process was conducted on the equation of the collapse potential predicted by ANN to study its reliability when utilized in a situation of soil that has uncertainty in its properties. The prediction equation utilized in this study was developed previously by the authors. The probabilities of failure were then plotted against a range of uncertainties expressed in terms of coefficient of variation. As a result of reliability analysis, it was found that the collapse potential equation showed a high degree of reliability in case of uncertainty in gypseous sandy soil properties within the specified coefficient of variation (COV) for each property. When t
... Show More