Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering. The extraction of features gave a high distinguishability and helped GA reach the solution more accurately and faster.
The significance of the research conducted in northern Iraq comes despite the expansion of afforestation projects; yet, the suffering of the forests has increased due to their lack of scientific study, unpredictability of the climate, and adverse effects on the spread and growth of plant species Therefore, the goal of the study is to understand the effects of afforestation through a statistical analysis of plant diversity in northern Iraq and its distinctivenessThe analysis revealed that natural groupings had improved qualitatively more than other groups, particularly some dwindling species that are able to compete and occupy new areas. drought-prone vegetation, vegetation, and climat
Introduction: Cutaneous leishmaniasis is considered a parasitic contagion resulting from the flagellated parasite belonging to the genus of Leishmania. Also, cutaneous leishmaniasis is a zoonotic ailment transmitted through the bloodsucking sand-flies bite (belonging to the Phlebotomus genus). The disease's reservoirs included wild or semi-domesticated animals, in general rodents and dogs. Tissue inhibitor metalloproteinase-1 (TIMP-1) is one of the extracellular matrix proteins that have a role in vessel wall degeneration and aneurysm development. In addition, it belongs to the zinc-dependent endopeptidases family that are involved in the degradation of connective tissues proteins which are included in vascular integrity maintenance. The Ge
... Show MoreParkinson’s disease (PD) consider as a progressive ageing neurodegenerative disease, Parkinson’s consider as a heterogenous disease, with mainly initiate through correlation between genetic and epigenetic by inducing of different factors on some related genes, these factors like (environmental, toxicants, nutrition, heavy metals, pesticides, some drugs) and also(trauma on head ,strokes) in addition to unknown reasons which cause an idiopathic PD .Current study aims to focusing on specific related PD gene called SNCA by single nucleotides polymorphism (rs2619363) as a risk factor for PD initiation disease in PD patients in addition to study the effect of polymorphisms on random Iraqi patients with different gastrointestinal
... Show MoreThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of coronavirus disease 2019 (COVID-19) which represents a global public health crisis. Based on recent published studies, this review discusses current evidence related to the transmission, clinical characteristics, diagnosis, management and prevention of COVID-19. It is hoped that this review article will provide a benefit for the public to well understand and deal with this new virus, and give a reference for future researches.
Some genetic factors are not only involved in some autoimmune diseases but also interfere with their treatment, Such as Crohn's disease (CD), Rheumatoid Arthritis (RA), ankylosing spondylitis (AS), and psoriasis (PS). Tumor Necrosis Factor (TNF) is a most important pro-inflammatory cytokine, which has been recognized as a main factor that participates in the pathogenesis and development of autoimmune disorders. Therefore, TNF could be a prospective target for treating these disorders, and many anti-TNF were developed to treat these disorders. Although the high efficacy of many anti-TNF biologic medications, the Patients' clinical responses to the autoimmune treatment showed significant heterogeneity. Two types of TNF receptor (TNFR); 1 an
... Show MoreIn this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t
... Show MoreAn Optimal Algorithm for HTML Page Building Process
For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.