In this paper, we will introduce the concept of interval value fuzzy n-fold KU-ideal in KU-algebras, which is a generalization of interval value fuzzy KU-ideal of KU-algebras and we will obtain few properties that is similar to the properties of interval value fuzzy KU-ideal in KU-algebras, see [8]. Also, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.
The research problem is that most of the construction projects exceed the planned value, due to the failure to implement the plans on time. The current study aims to monitor the implementation of the project and for each of the executed tasks of the table of quantities in order to detect deviations at the time they occur, evaluate the time and cost performance, and then identify the areas of waste and analyze the implementation of each task in order to diagnose the underlying problems and find possible and applicable solutions in the environment Iraqi. The research was applied in one of the companies specialized in the field of construction projects, and one of the most important conclusions reached is the possibility of applying
... Show MoreThe aim of this paper is to find a new method for solving a system of linear initial value problems of ordinary differential equation using approximation technique by two-point osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0, 1] and compared the results with conventional methods and is shown to be that seems to converge faster and more accurately than the conventional methods.
In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.
This work is concerned with studying the optimal classical continuous control quaternary vector problem. It is consisted of; the quaternary nonlinear hyperbolic boundary value problem and the cost functional. At first, the weak form of the quaternary nonlinear hyperbolic boundary value problem is obtained. Then under suitable hypotheses, the existence theorem of a unique state quaternary vector solution for the weak form where the classical continuous control quaternary vector is considered known is stated and demonstrated by employing the method of Galerkin and the compactness theorem. In addition, the continuity operator between the state quaternary vector solution of the weak form and the corresponding classical continuous control qua
... Show MoreIn this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
ABSTRACT
The research aims to analyze the value chain of dairy products in Iraq (Abu Ghraib/Study Case) factories for the year 2022, where value chain rings are identified to discuss and track the most important determinants and problems in the value chain rings of dairy products and their basic and secondary activities, as well as calculate the value added of the products by subtracting the total revenues of products from their variable costs. Research data were collected for the period 2022. Preliminary information and data from its field sources and personal interviews were collected through a questionnaire prepa
This study examines the impact of adopting International Financial Reporting Standards (IFRS) on the value of economic units. Given the global push toward standardization of financial reporting to enhance financial statement transparency, comparability, and reliability, this research seeks to understand the implications of these standards for economic valuation within a region characterized by its unique economic and regulatory challenges. A questionnaire was distributed to 86 Iraqi academics specializing in economics, accounting, and finance to collect their views on the impact of adopting international financial reporting standards. Through careful statistical analysis, the study concluded that applying international financial reporting s
... Show MoreThe cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element
... Show More