In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
This paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
Most of the propositions, after the Arabic letter reached a position of integrity and proficiency, the calligrapher turned to the production of calligraphic formations in various aesthetic and expressive forms, investing the spiritual energies in what these calligraphic compositions show in artistic paintings. It carries a lot of meanings that are embodied in linear formations, and in order to reach these expressions and know the effective positions of space, this research is concerned with studying these technical treatments. The first chapter included the research problem, which included a question about the effectiveness of space in the linear painting, the importance of research and the temporal and spatial boundaries. As for the s
... Show MoreIn this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved. Spaces of Fuzzy Orderings Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exponent 2. (see [1] (i.e. x 2 = 1,  x  G), and X is a (non empty) fuzzy subset of the character group ï£ (A) = Hom(A,{1,–1}) satisfying: 1. X is a fuzzy closed subset of ï£ (A). 2.  an element e  A such that ï³(e) = – 1  ï³ ïƒŽ X. 3. Xïž :={a  A\ ï³(a) = 1  ï³ ïƒŽ X} = 1. 4. If f and g are forms over A and if x  D(
... Show MoreIn this paper, we introduce new definitions of the - spaces namely the - spaces Here, and are natural numbers that are not necessarily equal, such that . The space refers to the n-dimensional Euclidean space, refers to the quaternions set and refers to the N-dimensional quaternionic space. Furthermore, we establish and prove some properties of their elements. These elements are quaternion-valued N-vector functions defined on , and the spaces have never been introduced in this way before.
The purchase of a home and access to housing is one of the most important requirements for the life of the individual and the stability of living and the development of the prices of houses in general and in Baghdad in particular affected by several factors, including the basic area of the house, the age of the house, the neighborhood in which the housing is available and the basic services, Where the statistical model SSM model was used to model house prices over a period of time from 2000 to 2018 and forecast until 2025 The research is concerned with enhancing the importance of this model and describing it as a standard and important compared to the models used in the analysis of time series after obtaining the
... Show MoreIn this paper, we generalize the definition of fuzzy inner product space that is introduced by Lorena Popa and Lavinia Sida on a complex linear space. Certain properties of the generalized fuzzy inner product function are shown. Furthermore, we prove that this fuzzy inner product produces a Nadaban-Dzitac fuzzy norm. Finally, the concept of orthogonality is given and some of its properties are proven.
Our goal in the present paper is to introduce a new type of fuzzy inner product space. After that, to illustrate this notion, some examples are introduced. Then we prove that that every fuzzy inner product space is a fuzzy normed space. We also prove that the cross product of two fuzzy inner spaces is again a fuzzy inner product space. Next, we prove that the fuzzy inner product is a non decreasing function. Finally, if U is a fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U, then we prove that U can be written as a direct sum of D and the fuzzy orthogonal complement of D.
Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba
... Show MoreThe aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), q = pm, for some prime number p and some integer m.
Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.
Moreover some theorems about these notations are proved.