In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
The concept of strong soft pre-open set was initiated by Biswas and Parsanann.We utilize this notion to study several characterizations and properties of this set. We investigate the relationships between this set and other types of soft open sets. Moreover, the properties of the strong soft pre-interior and closure are discussed. Furthermore, we define a new concept by using strong soft pre-closed that we denote as locally strong soft pre-closed, in which several results are obtained. We establish a new type of soft pre-open set, namely soft pre-open. Also, we continue to study pre- soft open set and discuss the relationships among all these sets. Some counter examples are given to show some relations
... Show MoreLet R be commutative ring with identity and let M be any unitary left R-module. In this paper we study the properties of ec-closed submodules, ECS- modules and the relation between ECS-modules and other kinds of modules. Also, we study the direct sum of ECS-modules.
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.
In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
Let R be a commutative ring with identity and let M be a unital left R-module.
A.Tercan introduced the following concept.An R-module M is called a CLSmodule
if every y-closed submodule is a direct summand .The main purpose of this
work is to develop the properties of y-closed submodules.
Continuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.
The topic of the research tagged (narrative structure and its impact on building open and closed endings in the fictional film) is summarized by studying the mechanism of employing closed and open endings in the fictional film. novelist, then the need for it, as well as the objectives of the research and clarifying its limits as well as its importance. Then moving to the theoretical framework, which included three topics, where the first topic was entitled (the cinematic construction of the film narrative), either the second topic (the structure of complexity and narrative solutions), or the third topic dealt with the subject (the structure of the end and its relationship to the construction of the narrative). After completing the theore
... Show MoreIn this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.