In real-life problems, we use square roots in natural distributions such as (the probability density function), distances and lengths in the Pythagorean theorem, and quadratic formulas in (the height of falling objects), radius of circles, harmonic movements (pendulum and springs), and standard deviation in statistics. We have observed that using fuzzy sets in real-life problems is more convenient than ordinary sets. Therefore, they are important in algebraic structures. As a result, more effort has been made to study square root structures in fuzzy sets. This paper introduces the notion of square roots fuzzy of QS-ideals on QS-algebras and some important characteristics. Some illustrative examples have been provided which prove that every SRF-BCK-ideal is an SRF QS-ideal. Also, the image and the inverse image of SRF-QS-ideals are discussed. Finally, the product of SRF-QS-ideals on QS-algebra is defined and some important properties have been proved.
This study investigated the cubic intuitionistic fuzzy set of TM-algebra as a generalization of the cubic set. First, a cubic intuitionistic ideal and a cubic intuitionistic T-ideal are defined, followed by a discussion of their properties. Furthermore, the level set of a cubic intuitionistic TM-algebra is defined, and the relationship between a cubic intuitionistic level set and the cubic intuitionistic T-ideal is established. A novel definition of a cubic intuitionistic set under homomorphism is proposed, and several significant results are demonstrated.
In this work, we study of the concept of a cubic set of a semigroup in KU-algebra. Firstly, we study a cubic sub KU-semigroup and achieve some results in this notion. And then, we get a relation between a cubic sub KU-semi group and a level set of a cubic set. Moreover, we define some cubic ideals of this structure and we found relationships between these ideals.
2010 AMS Classification. 08A72, 03G25, 06F35
This paper refers to studying some types of ideals, specifically cubic bipolar ideals and cubic bipolar T-ideals of TM algebra. It also introduces a cubic bipolar sub-TM-algebra and several important properties of these concepts. The relationships between these ideals and characterizations of cubic bipolar T-ideals are investigated.
The nuclear charge density distributions, form factors andcorresponding proton, charge, neutron, and matter root mean squareradii for stable 4He, 12C, and 16O nuclei have been calculated usingsingle-particle radial wave functions of Woods-Saxon potential andharmonic-oscillator potential for comparison. The calculations for theground charge density distributions using the Woods-Saxon potentialshow good agreement with experimental data for 4He nucleus whilethe results for 12C and 16O nuclei are better in harmonic-oscillatorpotential. The calculated elastic charge form factors in Woods-Saxonpotential are better than the results of harmonic-oscillator potential.Finally, the calculated root mean square radii usingWoods-Saxonpotentials ho
... Show MoreThe nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
Background: Morphology of the root canal system is divergent and unpredictable, and rather linked to clinical complications, which directly affect the treatment outcome. This objective necessitates continuous informative update of the effective clinical and laboratory methods for identifying this anatomy, and classification systems suitable for communication and interpretation in different situations. Data: Only electronic published papers were searched within this review. Sources: “PubMed” website was the only source used to search for data by using the following keywords "root", "canal", "morphology", "classification". Study selection: 153 most relevant papers to the topic were selected, especially the original articles and review pa
... Show MoreThe aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreIn this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some example
... Show More